21 research outputs found

    Neural EGFL-Like 1 Regulates Cartilage Maturation through Runt-Related Transcription Factor 3–Mediated Indian Hedgehog Signaling

    Get PDF
    The pro-chondrogenic function of runt-related transcription factor 2 (Runx2) was previously considered to be dependent on direct binding with the promoter of Indian hedgehog (Ihh)—the major regulator of chondrocyte differentiation, proliferation, and maturation. The authors’ previous studies identified neural EGFL like 1 (Nell-1) as a Runx2-responsive growth factor for chondrogenic differentiation and maturation. In this study, it was further revealed that the pro-chondrogenic activities of Nell-1 also rely on Ihh signaling, by showing: i) Nell-1 significantly elevated Ihh signal transduction; ii) Nell-1 deficiency markedly reduced Ihh activation in chondrocytes; and iii) Nell-1–stimulated chondrogenesis was significantly reduced by the specific hedgehog inhibitor cyclopamine. Importantly, the authors demonstrated that Nell-1–responsive Ihh signaling and chondrogenic differentiation extended to Runx2 −/− models in vitro and in vivo. In Runx2 −/− chondrocytes, Nell-1 stimulated the expression and signal transduction of Runx3, another transcription factor required for complete chondrogenic differentiation and maturation. Furthermore, knocking down Runx3 in Runx2 −/− chondrocytes abolished Nell-1\u27s stimulation of Ihh-associated molecule expression, which validates Runx3 as a major mediator of Nell-1–stimulated Ihh activation. For the first time, the Runx2→Nell-1→Runx3→Ihh signaling cascade during chondrogenic differentiation and maturation has been identified as an alternative, but critical, pathway for Runx2 to function as a pro-chondrogenic molecule via Nell-1. © 2018 American Society for Investigative Patholog

    Pathogenesis of peroxisomal deficiency disorders (Zellweger syndrome) may be mediated by misregulation of the GABAergic system via the diazepam binding inhibitor

    Get PDF
    BACKGROUND: Zellweger syndrome (ZS) is a fatal inherited disease caused by peroxisome biogenesis deficiency. Patients are characterized by multiple disturbances of lipid metabolism, profound hypotonia and neonatal seizures, and distinct craniofacial malformations. Median live expectancy of ZS patients is less than one year. While the molecular basis of peroxisome biogenesis and metabolism is known in considerable detail, it is unclear how peroxisome deficiency leads to the most severe neurological symptoms. Recent analysis of ZS mouse models has all but invalidated previous hypotheses. HYPOTHESIS: We suggest that a regulatory rather than a metabolic defect is responsible for the drastic impairment of brain function in ZS patients. TESTING THE HYPOTHESIS: Using microarray analysis we identify diazepam binding inhibitor/acyl-CoA binding protein (DBI) as a candidate protein that might be involved in the pathogenic mechanism of ZS. DBI has a dual role as a neuropeptide antagonist of GABA(A) receptor signaling in the brain and as a regulator of lipid metabolism. Repression of DBI in ZS patients could result in an overactivation of GABAergic signaling, thus eventually leading to the characteristic hypotonia and seizures. The most important argument for a misregulation of GABA(A) in ZS is, however, provided by the striking similarity between ZS and "benzodiazepine embryofetopathy", a malformation syndrome observed after the abuse of GABA(A) agonists during pregnancy. IMPLICATIONS OF THE HYPOTHESIS: We present a tentative mechanistic model of the effect of DBI misregulation on neuronal function that could explain some of the aspects of the pathology of Zellweger syndrome

    Comparative genetic analysis: the utility of mouse genetic systems for studying human monogenic disease

    Get PDF
    One of the long-term goals of mutagenesis programs in the mouse has been to generate mutant lines to facilitate the functional study of every mammalian gene. With a combination of complementary genetic approaches and advances in technology, this aim is slowly becoming a reality. One of the most important features of this strategy is the ability to identify and compare a number of mutations in the same gene, an allelic series. With the advent of gene-driven screening of mutant archives, the search for a specific series of interest is now a practical option. This review focuses on the analysis of multiple mutations from chemical mutagenesis projects in a wide variety of genes and the valuable functional information that has been obtained from these studies. Although gene knockouts and transgenics will continue to be an important resource to ascertain gene function, with a significant proportion of human diseases caused by point mutations, identifying an allelic series is becoming an equally efficient route to generating clinically relevant and functionally important mouse models
    corecore