33 research outputs found

    Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association

    Get PDF
    The HLA-G gene displays several peculiarities that are distinct from those of classical HLA class I genes. The unique structure of the HLA-G molecule permits a restricted peptide presentation and allows the modulation of the cells of the immune system. Although polymorphic sites may potentially influence all biological functions of HLA-G, those present at the promoter and 3′ untranslated regions have been particularly studied in experimental and pathological conditions. The relatively low polymorphism observed in the MHC-G coding region both in humans and apes may represent a strong selective pressure for invariance, whereas, in regulatory regions several lines of evidence support the role of balancing selection. Since HLA-G has immunomodulatory properties, the understanding of gene regulation and the role of polymorphic sites on gene function may permit an individualized approach for the future use of HLA-G for therapeutic purposes

    Fluorine based plasma treatment of biocompatible silicone elastomer. Effect of temperature on etch rate and surface properties

    No full text
    This paper describes F-based dry etching and resulting surface properties of biocompatible silicone elastomer. The etch rate of polysiloxane and surface morphology was found to be highly temperature dependent. An increase in temperature results in a significantly higher etch rate and a lower surface roughness. Possible mechanisms of the etching process and the roughness formation on an elastomer surface are discussed. The polysiloxane surface was proved to have hydrophobic characteristics both prior to and after plasma exposure. The results of the preliminary cytotoxicity study are very promising: cell viability on a raw and plasma treated polysiloxane was found to be very high and comparable to control. Due to the acceptable etch rate and absence of toxic contaminations, a F-containing plasma is considered an excellent method for microprocessing of silicone elastomers intended for biomedical applications
    corecore