229 research outputs found

    Excited States in Warm and Hot Dense Matter

    Full text link
    Accurate modeling of warm and hot dense matter is challenging in part due to the multitude of excited states that must be considered. In thermal density functional theory, these excited states are averaged over to produce a single, averaged, thermal ground state. Here we present a variational framework and model that includes explicit excited states. In this framework an excited state is defined by a set of effective one-electron occupation factors and the corresponding energy is defined by the effective one-body energy with an exchange and correlation term. The variational framework is applied to an atom-in-plasma model (a generalization of the so-called average atom model). Comparisons with a density functional theory based average atom model generally reveal good agreement in the calculated pressure, but the new model also gives access to the excitation energies and charge state distributions

    Observing sub-microsecond telegraph noise with the radio frequency single electron transistor

    Full text link
    Telegraph noise, which originates from the switching of charge between meta-stable trapping sites, becomes increasingly important as device sizes approach the nano-scale. For charge-based quantum computing, this noise may lead to decoherence and loss of read out fidelity. Here we use a radio frequency single electron transistor (rf-SET) to probe the telegraph noise present in a typical semiconductor-based quantum computer architecture. We frequently observe micro-second telegraph noise, which is a strong function of the local electrostatic potential defined by surface gate biases. We present a method for studying telegraph noise using the rf-SET and show results for a charge trap in which the capture and emission of a single electron is controlled by the bias applied to a surface gate.Comment: Accepted for publication in Journal of Applied Physics. Comments always welcome, email [email protected], [email protected]
    • …
    corecore