48 research outputs found
Self-organized Beating and Swimming of Internally Driven Filaments
We study a simple two-dimensional model for motion of an elastic filament
subject to internally generated stresses and show that wave-like propagating
shapes which can propel the filament can be induced by a self-organized
mechanism via a dynamic instability. The resulting patterns of motion do not
depend on the microscopic mechanism of the instability but only of the filament
rigidity and hydrodynamic friction. Our results suggest that simplified
systems, consisting only of molecular motors and filaments could be able to
show beating motion and self-propulsion.Comment: 8 pages, 2 figures, REVTe
Force and Motion Generation of Molecular Motors: A Generic Description
We review the properties of biological motor proteins which move along linear
filaments that are polar and periodic. The physics of the operation of such
motors can be described by simple stochastic models which are coupled to a
chemical reaction. We analyze the essential features of force and motion
generation and discuss the general properties of single motors in the framework
of two-state models. Systems which contain large numbers of motors such as
muscles and flagella motivate the study of many interacting motors within the
framework of simple models. In this case, collective effects can lead to new
types of behaviors such as dynamic instabilities of the steady states and
oscillatory motion.Comment: 29 pages, 9 figure
Direct Observation of the Myosin Va Recovery Stroke That Contributes to Unidirectional Stepping along Actin
Myosins are ATP-driven linear molecular motors that work as cellular force
generators, transporters, and force sensors. These functions are driven by
large-scale nucleotide-dependent conformational changes, termed
“strokes”; the “power stroke” is the force-generating
swinging of the myosin light chain–binding “neck” domain
relative to the motor domain “head” while bound to actin; the
“recovery stroke” is the necessary initial motion that primes, or
“cocks,” myosin while detached from actin. Myosin Va is a processive
dimer that steps unidirectionally along actin following a “hand over
hand” mechanism in which the trailing head detaches and steps forward
∼72 nm. Despite large rotational Brownian motion of the detached head about
a free joint adjoining the two necks, unidirectional stepping is achieved, in
part by the power stroke of the attached head that moves the joint forward.
However, the power stroke alone cannot fully account for preferential forward
site binding since the orientation and angle stability of the detached head,
which is determined by the properties of the recovery stroke, dictate actin
binding site accessibility. Here, we directly observe the recovery stroke
dynamics and fluctuations of myosin Va using a novel, transient caged
ATP-controlling system that maintains constant ATP levels through stepwise
UV-pulse sequences of varying intensity. We immobilized the neck of monomeric
myosin Va on a surface and observed real time motions of bead(s) attached
site-specifically to the head. ATP induces a transient swing of the neck to the
post-recovery stroke conformation, where it remains for ∼40 s, until ATP
hydrolysis products are released. Angle distributions indicate that the
post-recovery stroke conformation is stabilized by ≥5
kBT of energy. The high kinetic
and energetic stability of the post-recovery stroke conformation favors
preferential binding of the detached head to a forward site 72 nm away. Thus,
the recovery stroke contributes to unidirectional stepping of myosin Va
C-terminal Tail of β-Tubulin and its Role in the Alterations of Dynein Binding Mode
Dynein is a cytoskeletal molecular motor protein that moves along the microtubule (MT) and transports various cellular cargos during its movement. Using standard Molecular Dynamics (MD) simulation, Principle Component Analysis (PCA), and Normal Mode Analysis (NMA) methods, this investigation studied large-scale movements and local interactions of dynein’s Microtubule Binding Domain (MTBD) when bound to tubulin heterodimer subunits. Examination of the interactions between the MTBD segments, and their adjustments in terms of intra- and intermolecular distances at the interfacial area with tubulin heterodimer, particularly at α-H16, β-H18 and β-tubulin C-terminal tail (CTT), was the main focus of this study. The specific intramolecular interactions, electrostatic forces and the salt-bridge residue pairs were shown to be the dominating factors in orchestrating movements of the MTBD and MT interfacial segments in the dynein’s low-high affinity binding modes. Important interactions included β-Glu447 and β-Glu449 (CTT) with Arg3469 (MTBD-H6), Lys3472 (MTBD-H6-H7 loop) and Lys3479 (MTBD-H7); β-Glu449 with Lys3384 (MTBD-H8), Lys3386 and His3387 (MTBD-H1). The structural and precise position, orientation, and functional effects of the CTTs on the MT-MTBD, within reasonable cut-off distance for non-bonding interactions and under physiological conditions, are unavailable from the previous studies. The absence of the residues in the highly flexible MT-CTTs in the experimentally solved structures is perhaps in some cases due to insufficient data from density maps, but these segments are crucial in protein binding. The presented work contributes to the information useful for the MT-MTBD structure refinement