3 research outputs found

    A novel asymmetric patch reflectarray antenna with ground ring slots for 5g communication systems

    Get PDF
    The narrow bandwidth and low gain performances of a reflectarray are generally improved at the cost of high design complexity, which is not a good sign for high-frequency operation. A dual resonance asymmetric patch reflectarray antenna with a single layer is proposed in this work for 5G communication at 26 GHz. The asymmetric patch is developed from a square patch by tilting its one vertical side by a carefully optimized inclination angle. A progressive phase range of 650° is acquired by embedding a circular ring slot in the ground plane of the proposed element for gain improvement. A 332-element, center feed reflectarray is designed and tested, where its high cross polarization is suppressed by mirroring the orientation of asymmetric patches on its surface. The asymmetric patch reflectarray offers a 3 dB gain bandwidth of 3 GHz, which is 4.6% wider than the square patch reflectarray. A maximum measured gain of 24.4 dB has been achieved with an additional feature of dual linear polarization. Simple design with wide bandwidth and high-gain of asymmetric patch reflectarray make it suitable to be used in 5G communications at high frequencies

    Aspects Of Efficiency Enhancement In Reflectarrays With Analytical Investigation And Accurate Measurement

    Get PDF
    This paper presents a thorough review of the techniques involved in the enhancement of the efficiency performance of the reflectarray antenna. The effect of the selection of a suitable patch element or a proper feeding mechanism on efficiency improvement is studied in detail. Reflectarray loss quantification is examined in relation to the design techniques involved in the efficiency improvement. A low loss patch element with a wide reflection phase range and a properly illuminated reflectarray aperture are supposed to offer high efficiency performance. Additionally, the placement, the orientation and the position of a patch element on the reflectarray surface can also affect its efficiency performance. Mathematical equations were developed to estimate the efficiencies of circular and square aperture reflectarray antennas by considering their feed footprints. Moreover, a step by step practical method of predicting and measuring the total efficiency of a reflectarray antenna is presented. The two selected apertures of the reflectarray consisting of the square patch element configuration are fabricated and measured at a frequency of 26 GHz. Their measured efficiencies have been estimated using the derived equations, and the results were compared and validated using the efficiencies obtained by the conventional gain-directivity relation

    Bridging the Terahertz Gap: Channel Modeling for Next-Generation 6G Wireless Networks

    No full text
    : The THz spectrum (0.1–10 THz) is a region between optics and electronics, and it is still not fully explored and is unlicensed. Recent studies show that it will bring a revolution in technology, especially in the field of communication. Future communication technologies such as 6G and Terabit DSL will utilize this THz band as it has the capability to support high data rates in Tbps. For designing an efficient system that propagates these THz waves with low loss, it is required to understand the propagation channel properly. THz channel modeling is at its infancy stage, and a detailed investigation of channel behavior is required to study the efficient propagation of THz waves. In this study, the methods applied to the modeling of the THz channel are discussed in detail. Although channel modeling is a broad topic here only the methods and techniques are discussed along with their advantages and limitations. Lastly, the challenges and the future direction in the field of THz channel modeling are also discussed
    corecore