753 research outputs found
Dynamic structure factors of a dense mixture
We compute the dynamic structure factors of a dense binary liquid mixture.
These describe dynamics on molecular length scales, where structural relaxation
is important. We find that the presence of a few large particles in a dense
fluid of small particles slows down the dynamics considerably. We also observe
a deep narrowing of the spectrum for a disordered mixture composed of a nearly
equal packing of the two species. In contrast, a few small particles diffuse
easily in the background of a dense fluid of large particles. We expect our
results to describe neutron scattering from a dense mixture
Fluctuating magnetic moments in liquid metals
We re-analyze literature data on neutron scattering by liquid metals to show
that non-magnetic liquid metals possess a magnetic moment that fluctuates on a
picosecond time scale. This time scale follows the motion of the cage-diffusion
process in which an ion rattles around in the cage formed by its neighbors. We
find that these fluctuating magnetic moments are present in liquid Hg, Al, Ga
and Pb, and possibly also in the alkali metals.Comment: 17 pages, 5 figures, submitted to PR
Bone size and bone strength are increased in obese male adolescents
Context: Controversy exists on the effect of obesity on bone development during puberty.
Objective: Our objective was to determine differences in volumetric bone mineral density (vBMD) and bone geometry in male obese adolescents (ObAs) in overlap with changes in bone maturation, muscle mass and force development, and circulating sex steroids and IGF-I. We hypothesized that changes in bone parameters are more evident at the weight-bearing site and that changes in serum estradiol are most prominent.
Design, Setting, and Participants: We recruited 51 male ObAs (10-19 years) at the entry of a residential weight-loss program and 51 healthy age-matched and 51 bone-age-matched controls.
Main Outcome Measures: vBMD and geometric bone parameters, as well as muscle and fat area were studied at the forearm and lower leg by peripheral quantitative computed tomography. Muscle force was studied by jumping mechanography.
Results: In addition to an advanced bone maturation, differences in trabecular bone parameters (higher vBMD and larger trabecular area) and cortical bone geometry (larger cortical area and periosteal and endosteal circumference) were observed in ObAs both at the radius and tibia at different pubertal stages. After matching for bone age, all differences at the tibia, but only the difference in trabecular vBMD at the radius, remained significant. Larger muscle area and higher maximal force were found in ObAs compared with controls, as well as higher circulating free estrogen, but similar free testosterone and IGF-I levels.
Conclusions: ObAs have larger and stronger bones at both the forearm and lower leg. The observed differences in bone parameters can be explained by a combination of advanced bone maturation, higher estrogen exposure, and greater mechanical loading resulting from a higher muscle mass and strength
Square root singularity in the viscosity of neutral colloidal suspensions at large frequencies
The asymptotic frequency , dependence of the dynamic viscosity of
neutral hard sphere colloidal suspensions is shown to be of the form , where has been determined as a
function of the volume fraction , for all concentrations in the fluid
range, is the solvent viscosity and the P\'{e}clet time. For
a soft potential it is shown that, to leading order steepness, the asymptotic
behavior is the same as that for the hard sphere potential and a condition for
the cross-over behavior to is given. Our result for the hard
sphere potential generalizes a result of Cichocki and Felderhof obtained at low
concentrations and agrees well with the experiments of van der Werff et al, if
the usual Stokes-Einstein diffusion coefficient in the Smoluchowski
operator is consistently replaced by the short-time self diffusion coefficient
for non-dilute colloidal suspensions.Comment: 18 pages LaTeX, 1 postscript figur
CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a
This paper examines the application of CFD modelling to simulate the two-phase heat transfer mechanisms in a wickless heat pipe, also called a thermosyphon. Two refrigerants, R134a and R404a, were selected as the working fluids of the investigated thermosyphon. A CFD model was built to simulate the details of the two-phase flow and heat transfer phenomena during the start-up and steady-state operation of the thermosyphon. The CFD simulation results were compared with experimental measurements, with good agreement obtained between predicted temperature profiles and experimental temperature data, thus confirming that the CFD model was successful in reproducing the heat and mass transfer processes in the R134a and R404a charged thermosyphon, including the pool boiling in the evaporator section and the liquid film in the condenser section
Introductory clifford analysis
In this chapter an introduction is given to Clifford analysis and the underlying Clifford algebras. The functions under consideration are defined on Euclidean space and take values in the universal real or complex Clifford algebra, the structure and properties of which are also recalled in detail. The function theory is centered around the notion of a monogenic function, which is a null solution of a generalized Cauchy–Riemann operator, which is rotation invariant and factorizes the Laplace operator. In this way, Clifford analysis may be considered as both a generalization to higher dimension of the theory of holomorphic functions in the complex plane and a refinement of classical harmonic analysis. A notion of monogenicity may also be associated with the vectorial part of the Cauchy–Riemann operator, which is called the Dirac operator; some attention is paid to the intimate relation between both notions. Since a product of monogenic functions is, in general, no longer monogenic, it is crucial to possess some tools for generating monogenic functions: such tools are provided by Fueter’s theorem on one hand and the Cauchy–Kovalevskaya extension theorem on the other hand. A corner stone in this function theory is the Cauchy integral formula for representation of a monogenic function in the interior of its domain of monogenicity. Starting from this representation formula and related integral formulae, it is possible to consider integral transforms such as Cauchy, Hilbert, and Radon transforms, which are important both within the theoretical framework and in view of possible applications
Inelastic X-ray scattering study of the collective dynamics in liquid sodium
Inelastic X-ray scattering data have been collected for liquid sodium at
T=390 K, i.e. slightly above the melting point. Owing to the very high
instrumental resolution, pushed up to 1.5 meV, it has been possible to
determine accurately the dynamic structure factor, , in a wide
wavevector range, nm, and to investigate on the dynamical
processes underlying the collective dynamics. A detailed analysis of the
lineshape of , similarly to other liquid metals, reveals the
co-existence of two different relaxation processes with slow and fast
characteristic timescales respectively. The present data lead to the conclusion
that: i) the picture of the relaxation mechanism based on a simple viscoelastic
model fails; ii) although the comparison with other liquid metals reveals
similar behavior, the data do not exhibit an exact scaling law as the principle
of corresponding state would predict.Comment: RevTex, 7 pages, 6 eps figures. Accepted by Phys. Rev.
Short-wavelength collective modes in a binary hard-sphere mixture
We use hard-sphere generalized hydrodynamic equations to discuss the extended
hydrodynamic modes of a binary mixture. The theory presented here is analytic
and it provides us with a simple description of the collective excitations of a
dense binary mixture at molecular length scales. The behavior we predict is in
qualitative agreement with molecular-dynamics results for soft-sphere mixtures.
This study provides some insight into the role of compositional disorder in
forming glassy configurations.Comment: Published; withdrawn since already published. Ordering in the archive
gives misleading impression of new publicatio
Automated PGP9.5 immunofluorescence staining: a valuable tool in the assessment of small fiber neuropathy?
BACKGROUND: In this study we explored the possibility of automating the PGP9.5 immunofluorescence staining assay for the diagnosis of small fiber neuropathy using skin punch biopsies. The laboratory developed test (LDT) was subjected to a validation strategy as required by good laboratory practice guidelines and compared to the well-established gold standard method approved by the European Federation of Neurological Societies (EFNS). To facilitate automation, the use of thinner sections. (16 µm) was evaluated. Biopsies from previously published studies were used. The aim was to evaluate the diagnostic performance of the LDT compared to the gold standard. We focused on technical aspects to reach high-quality standardization of the PGP9.5 assay and finally evaluate its potential for use in large scale batch testing. RESULTS: We first studied linear nerve fiber densities in skin of healthy volunteers to establish reference ranges, and compared our LDT using the modifications to the EFNS counting rule to the gold standard in visualizing and quantifying the epidermal nerve fiber network. As the LDT requires the use of 16 µm tissue sections, a higher incidence of intra-epidermal nerve fiber fragments and a lower incidence of secondary branches were detected. Nevertheless, the LDT showed excellent concordance with the gold standard method. Next, the diagnostic performance and yield of the LDT were explored and challenged to the gold standard using skin punch biopsies of capsaicin treated subjects, and patients with diabetic polyneuropathy. The LDT reached good agreement with the gold standard in identifying small fiber neuropathy. The reduction of section thickness from 50 to 16 µm resulted in a significantly lower visualization of the three-dimensional epidermal nerve fiber network, as expected. However, the diagnostic performance of the LDT was adequate as characterized by a sensitivity and specificity of 80 and 64 %, respectively. CONCLUSIONS: This study, designed as a proof of principle, indicated that the LDT is an accurate, robust and automated assay, which adequately and reliably identifies patients presenting with small fiber neuropathy, and therefore has potential for use in large scale clinical studies
Multiple-Point and Multiple-Time Correlations Functions in a Hard-Sphere Fluid
A recent mode coupling theory of higher-order correlation functions is tested
on a simple hard-sphere fluid system at intermediate densities. Multi-point and
multi-time correlation functions of the densities of conserved variables are
calculated in the hydrodynamic limit and compared to results obtained from
event-based molecular dynamics simulations. It is demonstrated that the mode
coupling theory results are in excellent agreement with the simulation results
provided that dissipative couplings are included in the vertices appearing in
the theory. In contrast, simplified mode coupling theories in which the
densities obey Gaussian statistics neglect important contributions to both the
multi-point and multi-time correlation functions on all time scales.Comment: Second one in a sequence of two (in the first, the formalism was
developed). 12 pages REVTeX. 5 figures (eps). Submitted to Phys.Rev.
- …
