244 research outputs found

    Sustaining Educational Reforms in Introductory Physics

    Full text link
    While it is well known which curricular practices can improve student performance on measures of conceptual understanding, the sustaining of these practices and the role of faculty members in implementing these practices are less well understood. We present a study of the hand-off of Tutorials in Introductory Physics from initial adopters to other instructors at the University of Colorado, including traditional faculty not involved in physics education research. The study examines the impact of implementation of Tutorials on student conceptual learning across eight first-semester, and seven second-semester courses, for fifteen faculty over twelve semesters, and includes roughly 4000 students. It is possible to demonstrate consistently high, and statistically indistinguishable, student learning gains for different faculty members; however, such results are not the norm, and appear to rely on a variety of factors. Student performance varies by faculty background - faculty involved in, or informed by physics education research, consistently post higher student learning gains than less-informed faculty. Student performance in these courses also varies by curricula used - all semesters in which the research-based Tutorials and Learning Assistants are used have higher student learning gains than those semesters that rely on non-research based materials and do not employ Learning Assistants.Comment: 21 pages, 4 figures, and other essential inf

    From: John Willis

    Get PDF

    Flexible Power Modeling of LTE Base Stations

    Get PDF
    With the explosion of wireless communications in number of users and data rates, the reduction of network power consumption becomes more and more critical. This is especially true for base stations which represent a dominant share of the total power in cellular networks. In order to study power reduction techniques, a convenient power model is required, providing estimates of the power consumption in different scenarios. This paper proposes such a model, accurate but simple to use. It evaluates the base station power consumption for different types of cells supporting the 3GPP LTE standard. It is flexible enough to enable comparisons between state-of-the-art and advanced configurations, and an easy adaptation to various scenarios. The model is based on a combination of base station components and sub-components as well as power scaling rules as functions of the main system parameters

    Tidal Volume Estimation during Helmet Noninvasive Ventilation: an Experimental Feasibility Study

    Get PDF
    We performed a bench (BS) and human (HS) study to test the hypothesis that estimation of tidal volume (VT) during noninvasive helmet pressure support ventilation (nHPSV) would be possible using a turbine driven ventilator (TDV) coupled with an intentional leak single-limb vented circuit. During the BS a mannequin was connected to a lung simulator (LS) and at different conditions of respiratory mechanics, positive end expiratory pressure (PEEP) levels and leaks (30, 50 and 80 L/min). All differences were within the 95% limits of agreement (LoA) in all conditions in the Bland-Altman plot. The overall bias (difference between VT measured by TDV and LS) was 35 ml (95% LoA 10 to 57 ml), 15 ml (95% LoA -40 to 70 ml), 141 ml (95% LoA 109 to 173 ml) in the normal, restrictive and obstructive conditions. The bias at different leaks flow in normal condition was 29 ml (95% LoA 19 to 38 ml). In the HS four healthy volunteers using nHPSV had a pneumotachograph (P) inserted through a mouthpiece to measure subject's VT.The bias showed a scarce clinical relevance. In conclusions, VT estimation seems to be feasible and accurate in all conditions but the obstructive one. Additional leaks seem not to affect VT reliability
    • …
    corecore