402 research outputs found

    Upper semi-continuity of the Royden-Kobayashi pseudo-norm, a counterexample for H\"olderian almost complex structures

    Full text link
    If XX is an almost complex manifold, with an almost complex structure JJ of class \CC^\alpha, for some α>0\alpha >0, for every point p∈Xp\in X and every tangent vector VV at pp, there exists a germ of JJ-holomorphic disc through pp with this prescribed tangent vector. This existence result goes back to Nijenhuis-Woolf. All the JJ holomorphic curves are of class \CC^{1,\alpha} in this case. Then, exactly as for complex manifolds one can define the Royden-Kobayashi pseudo-norm of tangent vectors. The question arises whether this pseudo-norm is an upper semi-continuous function on the tangent bundle. For complex manifolds it is the crucial point in Royden's proof of the equivalence of the two standard definitions of the Kobayashi pseudo-metric. The upper semi-continuity of the Royden-Kobayashi pseudo-norm has been established by Kruglikov for structures that are smooth enough. In [I-R], it is shown that \CC^{1,\alpha} regularity of JJ is enough. Here we show the following: Theorem. There exists an almost complex structure JJ of class \CC^{1\over 2} on the unit bidisc \D^2\subset \C^2, such that the Royden-Kobayashi seudo-norm is not an upper semi-continuous function on the tangent bundle.Comment: 5 page

    The spectrum of the random environment and localization of noise

    Get PDF
    We consider random walk on a mildly random environment on finite transitive d- regular graphs of increasing girth. After scaling and centering, the analytic spectrum of the transition matrix converges in distribution to a Gaussian noise. An interesting phenomenon occurs at d = 2: as the limit graph changes from a regular tree to the integers, the noise becomes localized.Comment: 18 pages, 1 figur

    Barycentric decomposition of quantum measurements in finite dimensions

    Full text link
    We analyze the convex structure of the set of positive operator valued measures (POVMs) representing quantum measurements on a given finite dimensional quantum system, with outcomes in a given locally compact Hausdorff space. The extreme points of the convex set are operator valued measures concentrated on a finite set of k \le d^2 points of the outcome space, d< \infty being the dimension of the Hilbert space. We prove that for second countable outcome spaces any POVM admits a Choquet representation as the barycenter of the set of extreme points with respect to a suitable probability measure. In the general case, Krein-Milman theorem is invoked to represent POVMs as barycenters of a certain set of POVMs concentrated on k \le d^2 points of the outcome space.Comment: !5 pages, no figure

    Operator renewal theory and mixing rates for dynamical systems with infinite measure

    Get PDF
    We develop a theory of operator renewal sequences in the context of infinite ergodic theory. For large classes of dynamical systems preserving an infinite measure, we determine the asymptotic behaviour of iterates LnL^n of the transfer operator. This was previously an intractable problem. Examples of systems covered by our results include (i) parabolic rational maps of the complex plane and (ii) (not necessarily Markovian) nonuniformly expanding interval maps with indifferent fixed points. In addition, we give a particularly simple proof of pointwise dual ergodicity (asymptotic behaviour of ∑j=1nLj\sum_{j=1}^nL^j) for the class of systems under consideration. In certain situations, including Pomeau-Manneville intermittency maps, we obtain higher order expansions for LnL^n and rates of mixing. Also, we obtain error estimates in the associated Dynkin-Lamperti arcsine laws.Comment: Preprint, August 2010. Revised August 2011. After publication, a minor error was pointed out by Kautzsch et al, arXiv:1404.5857. The updated version includes minor corrections in Sections 10 and 11, and corresponding modifications of certain statements in Section 1. All main results are unaffected. In particular, Sections 2-9 are unchanged from the published versio

    Towards absorbing outer boundaries in General Relativity

    Get PDF
    We construct exact solutions to the Bianchi equations on a flat spacetime background. When the constraints are satisfied, these solutions represent in- and outgoing linearized gravitational radiation. We then consider the Bianchi equations on a subset of flat spacetime of the form [0,T] x B_R, where B_R is a ball of radius R, and analyze different kinds of boundary conditions on \partial B_R. Our main results are: i) We give an explicit analytic example showing that boundary conditions obtained from freezing the incoming characteristic fields to their initial values are not compatible with the constraints. ii) With the help of the exact solutions constructed, we determine the amount of artificial reflection of gravitational radiation from constraint-preserving boundary conditions which freeze the Weyl scalar Psi_0 to its initial value. For monochromatic radiation with wave number k and arbitrary angular momentum number l >= 2, the amount of reflection decays as 1/(kR)^4 for large kR. iii) For each L >= 2, we construct new local constraint-preserving boundary conditions which perfectly absorb linearized radiation with l <= L. (iv) We generalize our analysis to a weakly curved background of mass M, and compute first order corrections in M/R to the reflection coefficients for quadrupolar odd-parity radiation. For our new boundary condition with L=2, the reflection coefficient is smaller than the one for the freezing Psi_0 boundary condition by a factor of M/R for kR > 1.04. Implications of these results for numerical simulations of binary black holes on finite domains are discussed.Comment: minor revisions, 30 pages, 6 figure

    Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations

    Get PDF
    We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Regarding regularity, we show that the RG map, defined on a suitable space of interactions (= formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d≥3d \ge 3, these pathologies occur in a full neighborhood {β>β0, ∣h∣<ϵ(β)}\{ \beta > \beta_0 ,\, |h| < \epsilon(\beta) \} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d≥2d \ge 2, the pathologies occur at low temperatures for arbitrary magnetic-field strength. Pathologies may also occur in the critical region for Ising models in dimension d≥4d \ge 4. We discuss in detail the distinction between Gibbsian and non-Gibbsian measures, and give a rather complete catalogue of the known examples. Finally, we discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.

    Control parameterization for optimal control problems with continuous inequality constraints: New convergence results

    Get PDF
    Control parameterization is a powerful numerical technique for solving optimal control problems with general nonlinear constraints. The main idea of control parameterization is to discretize the control space by approximating the control by a piecewise-constant or piecewise-linear function, thereby yielding an approximate nonlinear programming problem. This approximate problem can then be solved using standard gradient-based optimization techniques. In this paper, we consider the control parameterization method for a class of optimal control problems in which the admissible controls are functions of bounded variation and the state and control are subject to continuous inequality constraints. We show that control parameterization generates a sequence of suboptimal controls whose costs converge to the true optimal cost. This result has previously only been proved for the case when the admissible controls are restricted to piecewise continuous functions

    Theory of differential inclusions and its application in mechanics

    Full text link
    The following chapter deals with systems of differential equations with discontinuous right-hand sides. The key question is how to define the solutions of such systems. The most adequate approach is to treat discontinuous systems as systems with multivalued right-hand sides (differential inclusions). In this work three well-known definitions of solution of discontinuous system are considered. We will demonstrate the difference between these definitions and their application to different mechanical problems. Mathematical models of drilling systems with discontinuous friction torque characteristics are considered. Here, opposite to classical Coulomb symmetric friction law, the friction torque characteristic is asymmetrical. Problem of sudden load change is studied. Analytical methods of investigation of systems with such asymmetrical friction based on the use of Lyapunov functions are demonstrated. The Watt governor and Chua system are considered to show different aspects of computer modeling of discontinuous systems

    Statistical-Thermodynamic Model for Light Scattering from Eye Lens Protein Mixtures

    Get PDF
    We model light-scattering cross sections of concentrated aqueous mixtures of the bovine eye lens proteins γB- and α-crystallin by adapting a statistical-thermodynamic model of mixtures of spheres with short-range attractions. The model reproduces measured static light scattering cross sections, or Rayleigh ratios, of γB-α mixtures from dilute concentrations where light scattering intensity depends on molecular weights and virial coefficients, to realistically high concentration protein mixtures like those of the lens. The model relates γB-γB and γB-α attraction strengths and the γB-α size ratio to the free energy curvatures that set light scattering efficiency in tandem with protein refractive index increments. The model includes (i) hard-sphere α-α interactions, which create short-range order and transparency at high protein concentrations, (ii) short-range attractive plus hard-core γ-γ interactions, which produce intense light scattering and liquid-liquid phase separation in aqueous γ-crystallin solutions, and (iii) short-range attractive plus hard-core γ-α interactions, which strongly influence highly non-additive light scattering and phase separation in concentrated γ-α mixtures. The model reveals a new lens transparency mechanism, that prominent equilibrium composition fluctuations can be perpendicular to the refractive index gradient. The model reproduces the concave-up dependence of the Rayleigh ratio on α/γ composition at high concentrations, its concave-down nature at intermediate concentrations, non-monotonic dependence of light scattering on γ-α attraction strength, and more intricate, temperature-dependent features. We analytically compute the mixed virial series for light scattering efficiency through third order for the sticky-sphere mixture, and find that the full model represents the available light scattering data at concentrations several times those where the second and third mixed virial contributions fail. The model indicates that increased γ-γ attraction can raise γ-α mixture light scattering far more than it does for solutions of γ-crystallin alone, and can produce marked turbidity tens of degrees celsius above liquid-liquid separation
    • …
    corecore