research

Upper semi-continuity of the Royden-Kobayashi pseudo-norm, a counterexample for H\"olderian almost complex structures

Abstract

If XX is an almost complex manifold, with an almost complex structure JJ of class \CC^\alpha, for some α>0\alpha >0, for every point pXp\in X and every tangent vector VV at pp, there exists a germ of JJ-holomorphic disc through pp with this prescribed tangent vector. This existence result goes back to Nijenhuis-Woolf. All the JJ holomorphic curves are of class \CC^{1,\alpha} in this case. Then, exactly as for complex manifolds one can define the Royden-Kobayashi pseudo-norm of tangent vectors. The question arises whether this pseudo-norm is an upper semi-continuous function on the tangent bundle. For complex manifolds it is the crucial point in Royden's proof of the equivalence of the two standard definitions of the Kobayashi pseudo-metric. The upper semi-continuity of the Royden-Kobayashi pseudo-norm has been established by Kruglikov for structures that are smooth enough. In [I-R], it is shown that \CC^{1,\alpha} regularity of JJ is enough. Here we show the following: Theorem. There exists an almost complex structure JJ of class \CC^{1\over 2} on the unit bidisc \D^2\subset \C^2, such that the Royden-Kobayashi seudo-norm is not an upper semi-continuous function on the tangent bundle.Comment: 5 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020