6,959 research outputs found

    Studies on the Accumulation of Chromium in Fenugreek

    Get PDF
    Studying Cr uptake by Fenugreek, we note that the maximum concentration of Cr takes place in the shells of the pods followed by leaves, stems and seeds in that order. Interestingly, applied higher doses of Cr does not increase accumulation of Cr in the stems, rather Cr content in the stems levels off. However, the maximum dispersal/distribution of Cr taken up is in the leaves

    Chromium uptake by Fenugreek

    Get PDF
    Fenugreek (Trigonella foenum- graecum) is both herb (leaves) and a spice (seed) belonging to the family Fabaceae. Fenugreek leaves and seeds are used in the cuisine of India. Fenugreek also has medicinal value. Fenugreek seeds are known to reduce serum glucose and improve glucose tolerance and hence are prescribed to diabetic patients. In the recent past supplemental Chromium is being prescribed to diabetic patients to activate (increased- insulin binding, insulin receptor number, insulin receptor phosphorylation) insulin. Plants can uptake substantial quantities of toxic metals from contaminated soils if these soils are well ameliorated. 

It is then probable that the medicinal efficacy of Fenugreek in the case of diabetes could be enhanced if it takes up chromium from the soil. Preliminary studies are being conducted to note the chromium uptake by Fenugreek from soils which are applied with potassium dichromate

    Computational simulation of matrix micro-slip bands in SiC/Ti-15 composite

    Get PDF
    Computational simulation procedures are used to identify the key deformation mechanisms for (0)(sub 8) and (90)(sub 8) SiC/Ti-15 metal matrix composites. The computational simulation procedures employed consist of a three-dimensional finite-element analysis and a micromechanics based computer code METCAN. The interphase properties used in the analysis have been calibrated using the METCAN computer code with the (90)(sub 8) experimental stress-strain curve. Results of simulation show that although shear stresses are sufficiently high to cause the formation of some slip bands in the matrix concentrated mostly near the fibers, the nonlinearity in the composite stress-strain curve in the case of (90)(sub 8) composite is dominated by interfacial damage, such as microcracks and debonding rather than microplasticity. The stress-strain curve for (0)(sub 8) composite is largely controlled by the fibers and shows only slight nonlinearity at higher strain levels that could be the result of matrix microplasticity

    Dynamic analysis of a pre-and-post ice impacted blade

    Get PDF
    The dynamic characteristics of an engine blade are evaluated under pre-and-post ice impact conditions using the NASA in-house computer code BLASIM. The ice impacts the leading edge of the blade causing severe local damage. The local structural response of the blade due to the ice impact is predicted via a transient response analysis by modeling only a local patch around the impact region. After ice impact, the global geometry of the blade is updated using deformations of the local patch and a free vibration analysis is performed. The effects of ice impact location, size and ice velocity on the blade mode shapes and natural frequencies are investigated. The results indicate that basic nature of the mode shapes remains unchanged after impact and that the maximum variation in natural frequencies occurs for the twisting mode of the blade

    Structural tailoring of aircraft engine blade subject to ice impact constraints

    Get PDF
    Results are presented for the minimum weight design of SR2 unswept blade made of (titanium/graphite-epoxy/titanium) sub s fiber composite. The blade which is rotating at high RPM is subject to ice impact. The root chord length, blade thicknesses at five stations, and graphite-epoxy ply orientation are chosen as design variables. Design constraints are placed on the behavior variables: local leading edge strain and root damage parameter (combined stress failure criteria) as a function due to ice impact, maximum spanwise centrifugal stress at the root of the deformed blade due to local damage, first three natural frequencies, and resonance margin after impact. The method of feasible directions is employed to solve the inequality constrained minimization problem. The effect of ice speed and the ice impact location on the final design are discussed

    Root damage analysis of aircraft engine blade subject to ice impact

    Get PDF
    The blade root response due to ice impact on an engine blade is simulated using the NASA in-house code BLASIM. The ice piece is modeled as an equivalent spherical object impacting on the leading edge of the blade and has the velocity opposite to that of the aircraft with direction parallel to the engine axis. The effect of ice impact is considered to be an impulse load on the blade with its amplitude computed based on the momentum transfer principle. The blade response due to the impact is carried out by modal superposition using the first three modes. The maximum dynamic stresses at the blade root are computed at the quarter cycle of the first natural frequency. A combined stress failure function based on modified distortion energy is used to study the spanwise bending damage response at the blade root. That damage function reaches maximum value for very low ice speeds and increases steeply with increases in engine speed

    Exclusion statistics: A resolution of the problem of negative weights

    Full text link
    We give a formulation of the single particle occupation probabilities for a system of identical particles obeying fractional exclusion statistics of Haldane. We first derive a set of constraints using an exactly solvable model which describes an ideal exclusion statistics system and deduce the general counting rules for occupancy of states obeyed by these particles. We show that the problem of negative probabilities may be avoided with these new counting rules.Comment: REVTEX 3.0, 14 page
    corecore