25,774 research outputs found

    Initial-boundary value problems for conservation laws with source terms and the Degasperis-Procesi equation

    Get PDF
    We consider conservation laws with source terms in a bounded domain with Dirichlet boundary conditions. We first prove the existence of a strong trace at the boundary in order to provide a simple formulation of the entropy boundary condition. Equipped with this formulation, we go on to establish the well-posedness of entropy solutions to the initial-boundary value problem. The proof utilizes the kinetic formulation and the compensated compactness method. Finally, we make use of these results to demonstrate the well-posedness in a class of discontinuous solutions to the initial-boundary value problem for the Degasperis-Procesi shallow water equation, which is a third order nonlinear dispersive equation that can be rewritten in the form of a nonlinear conservation law with a nonlocal source term.Comment: 24 page

    Systematic Investigation of Possibilities for New Physics Effects in b --> s Penguin Processes

    Full text link
    Although recent experimental results in b-->s penguin process seem to be roughly consistent with the standard model predictions, there may be still large possibilities of new physics hiding in this processes. Therefore, here we investigate systematically the potential new physics effects that may appear in time-dependent CP asymmetries of B --> phi K^0, B--> eta^\prime K^0 and B--> K^0 \pi^0 decay modes, by classifying the cases for the values of the mixing-induced indirect CP asymmetries, S_{phi K^0}, S_{eta^\prime K^0}, S_{K^0 pi^0} which are compared to S_{J/psi K^0}. We also show that several B_s decay modes may help to resolve the ambiguities in such an analysis. Through combining analysis with the time-dependent CP asymmetries of B_s decay modes such as B_s --> phi eta^\prime, B_s--> eta^\prime pi^0 and B_s --> K^0 bar{K}^0, we can determine where the new CP phases precisely come from.Comment: 17 pages, version to be published in Prog.Theor.Phy

    Influence of aesthetic design elements on residential satisfaction in apartment Based on Seoul apartment complex

    Get PDF
    This study aimed to examine the influence of aesthetic design elements on residential satisfaction in urban apartment complexes, focusing on elements that are generally considered less important. A total of 65 apartment complexes in Seoul, a city predominantly characterized by middle-class apartment living, were surveyed to assess residential satisfaction. Using multiple regression analysis, the relationships between the dependent variable (post-occupancy evaluation) and 28 independent variables were analyzed. The results revealed significant correlations between residential satisfaction and various independent variables. Specifically, three out of eight aesthetic design factors, namely the main complex entrance design, exterior mass design, and landscape design, were found to have a significant impact on residential satisfaction, collectively accounting for 17.16% of the total satisfaction variance. This finding suggests that aesthetic design elements play an increasingly important role in metro cities. The practical implications of this study are twofold. Firstly, it provides housing providers with strategic guidelines, emphasizing the significance of incorporating aesthetically pleasing design elements to enhance residential satisfaction. Secondly, the study offers potential customers valuable information regarding the importance of aesthetic design in their decision-making process when choosing residential properties. Overall, this research contributes to a better understanding of the relationship between aesthetic design elements and residential satisfaction in urban apartment complexes, shedding light on the growing importance of aesthetics in the housing market

    Orientational Melting in Carbon Nanotube Ropes

    Full text link
    Using Monte Carlo simulations, we investigate the possibility of an orientational melting transition within a "rope" of (10,10) carbon nanotubes. When twisting nanotubes bundle up during the synthesis, orientational dislocations or twistons arise from the competition between the anisotropic inter-tube interactions, which tend to align neighboring tubes, and the torsion rigidity that tends to keep individual tubes straight. We map the energetics of a rope containing twistons onto a lattice gas model and find that the onset of a free "diffusion" of twistons, corresponding to orientational melting, occurs at T_OM > 160 K.Comment: 4 page LaTeX file with 3 figures (10 PostScript files

    Daytime lidar measurements of tidal winds in the mesospheric sodium layer at Urbana, Illinois

    Get PDF
    For more than 15 years lidar systems have been used to study the chemistry and dynamics of the mesospheric sodium layer. Because the layer is an excellent tracer of atmospheric wave motions, sodium lidar has proven to be particularly useful for studying the influence of gravity waves and tides on mesospheric dynamics. These waves, which originate in the troposphere and stratosphere, propagate through the mesosphere and dissipate their energy near the mesopause making important contributions to the momentum and turbulence budget in this region of the atmosphere. Recently, the sodium lidar was modified for daytime operation so that wave phenomena and chemical effects could be monitored throughout the complete diurnal cycle. The results of continuous 24 hour lidar observations of the sodium layer structure are presented alond with measurement of the semidiurnal tidal winds

    Non-Classical Response from Quench-Cooled Solid Helium Confined in Porous Gold

    Full text link
    We have investigated the non-classical response of solid 4He confined in porous gold set to torsional oscillation. When solid helium is grown rapidly, nearly 7% of the solid helium appears to be decoupled from the oscillation below about 200 mK. Dissipation appears at temperatures where the decoupling shows maximum variation. In contrast, the decoupling is substantially reduced in slowly grown solid helium. The dynamic response of solid helium was also studied by imposing a sudden increase in the amplitude of oscillation. Extended relaxation in the resonant period shift, suggesting the emergence of the pinning of low energy excitations, was observed below the onset temperature of the non-classical response. The motion of a dislocation or a glassy solid is restricted in the entangled narrow pores and is not likely responsible for the period shift and long relaxation
    corecore