191 research outputs found

    Interplay of chiral and helical states in a Quantum Spin Hall Insulator lateral junction

    Full text link
    We study the electronic transport across an electrostatically-gated lateral junction in a HgTe quantum well, a canonical 2D topological insulator, with and without applied magnetic field. We control carrier density inside and outside a junction region independently and hence tune the number and nature of 1D edge modes propagating in each of those regions. Outside the 2D gap, magnetic field drives the system to the quantum Hall regime, and chiral states propagate at the edge. In this regime, we observe fractional plateaus which reflect the equilibration between 1D chiral modes across the junction. As carrier density approaches zero in the central region and at moderate fields, we observe oscillations in resistance that we attribute to Fabry-Perot interference in the helical states, enabled by the broken time reversal symmetry. At higher fields, those oscillations disappear, in agreement with the expected absence of helical states when band inversion is lifted.Comment: 5 pages, 4 figures, supp. ma

    Electron-nuclear interaction in 13C nanotube double quantum dots

    Get PDF
    For coherent electron spins, hyperfine coupling to nuclei in the host material can either be a dominant source of unwanted spin decoherence or, if controlled effectively, a resource allowing storage and retrieval of quantum information. To investigate the effect of a controllable nuclear environment on the evolution of confined electron spins, we have fabricated and measured gate-defined double quantum dots with integrated charge sensors made from single-walled carbon nanotubes with a variable concentration of 13C (nuclear spin I=1/2) among the majority zero-nuclear-spin 12C atoms. Spin-sensitive transport in double-dot devices grown using methane with the natural abundance (~ 1%) of 13C is compared with similar devices grown using an enhanced (~99%) concentration of 13C. We observe strong isotope effects in spin-blockaded transport, and from the dependence on external magnetic field, estimate the hyperfine coupling in 13C nanotubes to be on the order of 100 micro-eV, two orders of magnitude larger than anticipated theoretically. 13C-enhanced nanotubes are an interesting new system for spin-based quantum information processing and memory, with nuclei that are strongly coupled to gate-controlled electrons, differ from nuclei in the substrate, are naturally confined to one dimension, lack quadrupolar coupling, and have a readily controllable concentration from less than one to 10^5 per electron.Comment: supplementary discussion at http://marcuslab.harvard.edu/13CSupp.pd

    PREDICT-PD: Identifying risk of Parkinson's disease in the community: methods and baseline results

    Get PDF
    To present methods and baseline results for an online screening tool to identify increased risk for Parkinson's disease (PD) in the UK population

    Relaxation and Dephasing in a Two-Electron 13C Nanotube Double Quantum Dot

    Get PDF
    We use charge sensing of Pauli blockade (including spin and isospin) in a two-electron 13C nanotube double quantum dot to measure relaxation and dephasing times. The relaxation time, T1, first decreases with parallel magnetic field then goes through a minimum in a field of 1.4 T. We attribute both results to the spin-orbit-modified electronic spectrum of carbon nanotubes, which suppresses hyperfine mediated relaxation and enhances relaxation due to soft phonons. The inhomogeneous dephasing time, T2*, is consistent with previous data on hyperfine coupling strength in 13C nanotubes.Comment: related papers at http://marcuslab.harvard.ed

    Introduction to topological superconductivity and Majorana fermions

    Full text link
    This short review article provides a pedagogical introduction to the rapidly growing research field of Majorana fermions in topological superconductors. We first discuss in some details the simplest "toy model" in which Majoranas appear, namely a one-dimensional tight-binding representation of a p-wave superconductor, introduced more than ten years ago by Kitaev. We then give a general introduction to the remarkable properties of Majorana fermions in condensed matter systems, such as their intrinsically non-local nature and exotic exchange statistics, and explain why these quasiparticles are suspected to be especially well suited for low-decoherence quantum information processing. We also discuss the experimentally promising (and perhaps already successfully realized) possibility of creating topological superconductors using semiconductors with strong spin-orbit coupling, proximity-coupled to standard s-wave superconductors and exposed to a magnetic field. The goal is to provide an introduction to the subject for experimentalists or theorists who are new to the field, focusing on the aspects which are most important for understanding the basic physics. The text should be accessible for readers with a basic understanding of quantum mechanics and second quantization, and does not require knowledge of quantum field theory or topological states of matter.Comment: 21 pages, 5 figure

    Demonstration of Universal Parametric Entangling Gates on a Multi-Qubit Lattice

    Get PDF
    We show that parametric coupling techniques can be used to generate selective entangling interactions for multi-qubit processors. By inducing coherent population exchange between adjacent qubits under frequency modulation, we implement a universal gateset for a linear array of four superconducting qubits. An average process fidelity of F=93%\mathcal{F}=93\% is estimated for three two-qubit gates via quantum process tomography. We establish the suitability of these techniques for computation by preparing a four-qubit maximally entangled state and comparing the estimated state fidelity against the expected performance of the individual entangling gates. In addition, we prepare an eight-qubit register in all possible bitstring permutations and monitor the fidelity of a two-qubit gate across one pair of these qubits. Across all such permutations, an average fidelity of F=91.6±2.6%\mathcal{F}=91.6\pm2.6\% is observed. These results thus offer a path to a scalable architecture with high selectivity and low crosstalk
    corecore