762 research outputs found

    Generation and bistability of a waveguide nanoplasma observed by enhanced extreme-ultraviolet fluorescence

    Get PDF
    We present a study of the highly nonlinear optical excitation of noble gases in tapered hollow waveguides using few-femtosecond laser pulses. The local plasmonic field enhancement induces the generation of a nanometric plasma, resulting in incoherent extreme-ultraviolet fluorescence from optical transitions of neutral and ionized xenon, argon, and neon. Despite sufficient intensity in the waveguide, high-order harmonic generation is not observed. The fluorescent emission exhibits a strong bistability manifest as an intensity hysteresis, giving strong indications for multistep collisional excitations

    Nonlinear Light Generation in Localized Fields Using Gases and Tailored Solids

    Get PDF
    n Chap. 18, we demonstrated polarization-sensitive imaging at extreme-ultraviolet (EUV) wavelengths using a gas-phase high-harmonic generation (HHG) source. In a related project, we have investigated new types of gas-phase and solid-state EUV light sources employing field localization in plasmonic nanostructures and structured targets. Whereas our first results indicate that strong field confinement leads to exceedingly inefficient high-harmonic generation in gas-phase targets, for solid-state media efficient high-harmonic generation is possible in localized fields. The latter has great ramifications for new types of high-harmonic generation experiments and technological developments. Therefore, our research efforts aim in two directions: firstly, the development of new types of solid-state sources for high-harmonic generation and, secondly, the application of locally generated solid-state high-harmonic signals for spectroscopy and imaging

    Femtosecond light pulse propagation through metallic nanohole arrays: The role of the dielectric substrate

    Get PDF
    We study theoretically ultrafast light propagation through a periodic array of holes in a silver film deposited on a dielectric substrate using a three-dimensional finite-difference time-domain (FDTD) simulation. We focus on studying the effects of the coherent coupling between resonant surface plasmon polariton (SPP) excitations at the top and bottom interfaces of the metal film on the transmission dynamics. In a free standing film, the SPP excitations at both interfaces are fully in resonance and pronounced temporal oscillations in the energy flow between the bottom and top interfaces give evidence for coupling between the (±1,0) SPP modes via photon tunneling through the holes. Variation of the dielectric constant of the substrate lifts the energetic degeneracy between the two modes and thus decreases the coupling and suppresses the energy oscillations. New SPP-enhanced transmission peaks appear when higher order modes at the substrate/metal interface are brought into resonance with the (±1,0) air/metal resonance and efficient mode coupling is achieved. Both temporal transmission dynamics and near-field mode profiles are reported and their implications for tailoring the optical properties of these two-dimensional plasmonic crystals are discussed

    Rare diseases: human genome research is coming home

    Get PDF
    After a long and largely disappointing detour, Genome Research has reidentified Rare Diseases as a major opportunity for improving health care and a clue to understanding gene and genome function. In this Special Issue of CSH Molecular Case Studies on Rare Diseases, several invited Perspectives, numerous Case Reports, and this Editorial itself address recent breakthroughs as well as unsolved problems in this wide field. These range from exciting prospects for gap-free diagnostic whole-genome sequencing to persisting problems related to identifying and distinguishing pathogenic and benign variants; and from the good news that soon, the United Kingdom will no longer be the only country to have introduced whole-genome sequencing into health care to the sobering conclusion that in many countries the clinical infrastructure for bringing Genome Medicine to the patient is still lacking. With less than 5000 genes firmly implicated in disease, the identification of at least twice as many disease genes is a major challenge, and the elucidation of their function is an even larger task. But given the renewed interest in rare diseases, their importance for health care, and the vast and growing spectrum of concepts and methods for studying them, the future of Human Genome Research is bright

    Ultrafast spot-profile LEED of a charge-density wave phase transition

    Get PDF
    We investigate the optically driven phase transition between two charge-density wave (CDW) states at the surface of tantalum disulfide (1T-TaS2). Specifically, we employ a recently improved ultrafast low-energy electron diffraction setup to study the transition from the nearly commensurate to the incommensurate (IC) CDW state. The experimental setup allows us to follow transient changes in the diffraction pattern with high momentum resolution and 1-ps electron pulse duration. In particular, we trace the diffraction intensities and spot profiles of the crystal lattice, including main and CDW superstructure peaks, as well as the diffuse background. Harnessing the enhanced data quality of the instrumental upgrade, we follow the laser-induced transient disorder in the system and perform a spot-profile analysis that yields a substantial IC-peak broadening for very short time scales followed by a prolonged spot narrowing

    Pinning and gyration dynamics of magnetic vortices revealed by correlative Lorentz and bright-field imaging

    Get PDF
    Topological magnetic textures are of great interest in various scientific and technological fields. To allow for precise control of nanoscale magnetism, it is of great importance to understand the role of intrinsic defects in the host material. Here we use conventional and time-resolved Lorentz microscopy to study the effect of grain size in polycrystalline permalloy films on the pinning and gyration orbits of vortex cores inside magnetic nanoislands. To assess static pinning, we use in-plane magnetic fields to shift the core across the island while recording its position. This enables us to produce highly accurate two-dimensional maps of pinning sites. Based on this technique, we can generate a quantitative map of the pinning potential for the core, which we identify as being governed by grain boundaries. Furthermore, we investigate the effects of pinning on the dynamic behavior of the vortex core using stroboscopic Lorentz microscopy, harnessing a new photoemission source that accelerates image acquisition by about two orders of magnitude. We find characteristic changes to the vortex gyration in the form of increased dissipation and enhanced bistability in samples with larger grains

    Tailored high-contrast attosecond electron pulses for coherent excitation and scattering

    Get PDF
    Temporally shaping the density of electron beams using light forms the basis for a wide range of established and emerging technologies, including free-electron lasers and attosecond electron microscopy. The modulation depth of compressed electron pulses is a key figure of merit limiting applications. In this work, we present an approach for generating background-free attosecond electron pulse trains by sequential inelastic electron-light scattering. Harnessing quantum interference in the fractional Talbot effect, we suppress unwanted background density in electron compression by several orders of magnitude. Our results will greatly enhance applications of coherent electron-light scattering, such as stimulated cathodoluminescence and streaking

    Field emission at terahertz frequencies: AC-tunneling and ultrafast carrier dynamics

    Get PDF
    We demonstrate ultrafast terahertz (THz) field emission from a tungsten nanotip enabled by local field enhancement. Characteristic electron spectra which result from acceleration in the THz near-field are found. Employing a dual frequency pump–probe scheme, we temporally resolve different nonlinear photoemission processes induced by coupling near-infrared (NIR) and THz pulses. In the order of increasing THz field strength, we observe THz streaking, THz-induced barrier reduction (Schottky effect) and THz field emission. At intense NIR-excitation, the THz field emission is used as an ultrashort, local probe of hot electron dynamics in the apex. A first application of this scheme indicates a decreased carrier cooling rate in the confined tip geometry. Summarizing the results at various excitation conditions, we present a comprehensive picture of the distinct regimes in ultrafast photoemission in the near- and far-infrared
    • …
    corecore