3 research outputs found

    Disturbance in uniformly 13C-labelled DHA metabolism in elderly human subjects carrying the apoE ε4 allele

    Get PDF
    Carrying the apoE ε4 allele (E4+) is the most important genetic risk for Alzheimer's disease. Unlike non-carriers (E4 − ), E4+ seem not to be protected against Alzheimer's disease when consuming fish. We hypothesised that this may be linked to a disturbance in n-3 DHA metabolism in E4+. The aim of the present study was to evaluate [13C]DHA metabolism over 28 d in E4+v. E4 − . A total of forty participants (twenty-six women and fourteen men) received a single oral dose of 40 mg [13C]DHA, and its metabolism was monitored in blood and breath over 28 d. Of the participants, six were E4+ and thirty-four were E4 − . In E4+, mean plasma [13C]DHA was 31 % lower than that in E4 − , and cumulative β-oxidation of [13C]DHA was higher than that in E4 − 1–28 d post-dose (P≤ 0·05). A genotype × time interaction was detected for cumulative β-oxidation of [13C]DHA (P≤ 0·01). The whole-body half-life of [13C]DHA was 77 % lower in E4+ compared with E4 − (P≤ 0·01). In E4+ and E4 − , the percentage dose of [13C]DHA recovered/h as 13CO2 correlated with [13C]DHA concentration in plasma, but the slope of linear regression was 117 % steeper in E4+ compared with E4 − (P≤ 0·05). These results indicate that DHA metabolism is disturbed in E4+, and may help explain why there is no association between DHA levels in plasma and cognition in E4+. However, whether E4+ disturbs the metabolism of 13C-labelled fatty acids other than DHA cannot be deduced from the present study

    Kinetics of 13C-DHA before and during fish-oil supplementation in healthy older individuals

    Get PDF
    Background: Docosahexaenoic acid (DHA) kinetics appear to change with intake, which is an effect that we studied in an older population by using uniformly carbon-13–labeled DHA (13C-DHA). Objective: We evaluated the influence of a fish-oil supplement over 5 mo on the kinetics of 13C-DHA in older persons. Design: Thirty-four healthy, cognitively normal participants (12 men, 22 women) aged between 52 and 90 y were recruited. Two identical kinetic studies were performed, each with the use of a single oral dose of 40 mg 13C-DHA. The first kinetic study was performed before participants started taking a 5-mo supplementation that provided 1.4 g DHA/d plus 1.8 g eicosapentaenoic acid (EPA)/d (baseline); the second study was performed during the final month of supplementation (supplement). In both kinetic studies, blood and breath samples were collected ≤8 h and weekly over 4 wk to analyze 13C enrichment. Results: The time × supplement interaction for 13C-DHA in the plasma was not significant, but there were separate time and supplement effects (P < 0.0001). The area under the curve for plasma 13C-DHA was 60% lower while subjects were taking the supplement than at baseline (P < 0.0001). The uniformly carbon-13–labeled EPA concentration was 2.6 times as high 1 d posttracer while patients were taking the supplement as it was at baseline. The mean (±SEM) plasma 13C-DHA half-life was 4.5 ± 0.4 d at baseline compared with 3.0 ± 0.2 d while taking the supplement (P < 0.0001). Compared with baseline, the mean whole-body half-life was 61% lower while subjects were taking the supplement. The loss of 13C-DHA through β-oxidation to carbon dioxide labeled with carbon-13 increased from 0.085% of dose/h at baseline to 0.208% of dose/h while subjects were taking the supplement. Conclusions: In older persons, a supplement of 3.2 g EPA + DHA/d increased β-oxidation of 13C-DHA and shortened the plasma 13C-DHA half-life. Therefore, when circulating concentrations of EPA and DHA are increased, more DHA is available for β-oxidation. This trial was registered at clinicaltrials.gov as NCT01577004
    corecore