15 research outputs found

    Implementing invariant mass cuts and finite lifetime effects in top-antitop production at threshold

    Full text link
    The effects of the finite top quark width in the top pair production cross section close to the threshold are discussed in this talk. We introduce a ttˉt\bar{t} cross section with a cut on the invariant masses of the top and antitop that can be calculated theoretically with effective field theory (EFT) methods. The matching procedure to implement the physical phase-space boundaries in the NRQCD framework (``phase-space matching'') is briefly outlined.Comment: 4 pages, 4 figures. Talk given at the 14th International QCD Conference (Montpellier 7-12th July 2008

    Structure of the Membrane Anchor of Pestivirus Glycoprotein Erns, a Long Tilted Amphipathic Helix

    Get PDF
    Erns is an essential virion glycoprotein with RNase activity that suppresses host cellular innate immune responses upon being partially secreted from the infected cells. Its unusual C-terminus plays multiple roles, as the amphiphilic helix acts as a membrane anchor, as a signal peptidase cleavage site, and as a retention/secretion signal. We analyzed the structure and membrane binding properties of this sequence to gain a better understanding of the underlying mechanisms. CD spectroscopy in different setups, as well as Monte Carlo and molecular dynamics simulations confirmed the helical folding and showed that the helix is accommodated in the amphiphilic region of the lipid bilayer with a slight tilt rather than lying parallel to the surface. This model was confirmed by NMR analyses that also identified a central stretch of 15 residues within the helix that is fully shielded from the aqueous layer, which is C-terminally followed by a putative hairpin structure. These findings explain the strong membrane binding of the protein and provide clues to establishing the Erns membrane contact, processing and secretion

    O(alpha_s^2) corrections to fermionic Higgs decays in the MSSM

    Full text link
    We compute the two-loop corrections of O(alpha_s^2) to the Yukawa couplings in the framework of the Minimal Supersymmetric Standard Model (MSSM). The calculation is performed using the effective Lagrangian approach under the approximation of neglecting the Higgs boson mass with respect to the top quark, gluino and all squark flavour masses. As an application we derive the O(alpha_s^2) corrections to the partial decay width of the lightest Higgs boson to a bottom quark pair. We find that the two-loop corrections are sizable for large values of tan_beta and low CP-odd Higgs boson mass. With our calculation of the O(alpha_s^2) corrections the remaining theoretical uncertainties reduce below a few percent.Comment: 22 pages, 10 figure

    Zervikale Raumforderung

    No full text
    corecore