3,629 research outputs found

    Imaging the Near Field

    Full text link
    In an earlier paper we introduced the concept of the perfect lens which focuses both near and far electromagnetic fields, hence attaining perfect resolution. Here we consider refinements of the original prescription designed to overcome the limitations of imperfect materials. In particular we show that a multi-layer stack of positive and negative refractive media is less sensitive to imperfections. It has the novel property of behaving like a fibre-optic bundle but one that acts on the near field, not just the radiative component. The effects of retardation are included and minimized by making the slabs thinner. Absorption then dominates image resolution in the near-field. The deleterious effects of absorption in the metal are reduced for thinner layers.Comment: RevTeX, (9 pages, 8 figures

    Quenching of fluorescence of aromatic molecules by graphene due to electron transfer

    Full text link
    Investigations on the fluorescence quenching of graphene have been carried out with two organic donor molecules, pyrene butanaoic acid succinimidyl ester (PyBS, I) and oligo(p-phenylenevinylene) methyl ester (OPV-ester, II). Absorption and photoluminescence spectra of I and II recorded in mixture with increasing the concentrations of graphene showed no change in the former, but remarkable quenching of fluorescence. The property of graphene to quench fluorescence of these aromatic molecules is shown to be associated with photo-induced electron transfer, on the basis of fluorescence decay and time-resolved transient absorption spectroscopic measurements.Comment: 18 pages, 6 figure

    Novel magnetic properties of graphene: Presence of both ferromagnetic and antiferromagnetic features and other aspects

    Full text link
    Investigations of the magnetic properties of graphenes prepared by different methods reveal that dominant ferromagnetic interactions coexist along with antiferromagnetic interactions in all the samples. Thus, all the graphene samples exhibit room-temperature magnetic hysteresis. The magnetic properties depend on the number of layers and the sample area, small values of both favoring larger magnetization. Molecular charge-transfer affects the magnetic properties of graphene, interaction with a donor molecule such as tetrathiafulvalene having greater effect than an electron-withdrawing molecule such as tetracyanoethyleneComment: 16 pges, 5 figure

    Topological bands in two-dimensional networks of metamaterial elements

    Full text link
    We show that topological frequency band structures emerge in two-dimensional electromagnetic lattices of metamaterial components without the application of an external magnetic field. The topological nature of the band structure manifests itself by the occurrence of exceptional points in the band structure or by the emergence of one-way guided modes. Based on an EM network with nearly flat frequency bands of nontrivial topology, we propose a coupled-cavity lattice made of superconducting transmission lines and cavity QED components which is described by the Janes-Cummings-Hubbard model and can serve as simulator of the fractional quantum Hall effect

    Pressure dependence of the chlorine NQR in three solid chloro anisoles

    Get PDF
    The 35Cl Nuclear Quadrupole Resonance (NQR) frequency (νQ) and spin lattice relaxation time (T1) in the three anisoles 2,3,4-trichloroanisole, 2,3,6-trichloroanisole and 3,5-dichloroanisole have been measured as a function of pressure upto 5.1 kbar at 300 K, and the data have been analysed to estimate the temperature coefficients of the NQR frequency at constant volume. All the three compounds show a non linear variation of the NQR frequency with pressure, the rate of which is positive and decreases with increasing pressure. In case of 3,5-dichloroanisole the value becomes negative in the higher range of pressure studied. The spin lattice relaxation time T1 in all the three compounds shows a weak dependence on pressure, indicating that the relaxation is mainly due to the torsional motions
    corecore