11,568 research outputs found

    Treatments of the exchange energy in density-functional theory

    Full text link
    Following a recent work [Gal, Phys. Rev. A 64, 062503 (2001)], a simple derivation of the density-functional correction of the Hartree-Fock equations, the Hartree-Fock-Kohn-Sham equations, is presented, completing an integrated view of quantum mechanical theories, in which the Kohn-Sham equations, the Hartree-Fock-Kohn-Sham equations and the ground-state Schrodinger equation formally stem from a common ground: density-functional theory, through its Euler equation for the ground-state density. Along similar lines, the Kohn-Sham formulation of the Hartree-Fock approach is also considered. Further, it is pointed out that the exchange energy of density-functional theory built from the Kohn-Sham orbitals can be given by degree-two homogeneous N-particle density functionals (N=1,2,...), forming a sequence of degree-two homogeneous exchange-energy density functionals, the first element of which is minus the classical Coulomb-repulsion energy functional.Comment: 19 pages; original manuscript from 2001 (v1) revised for publication, with presentation substantially improved, some errors corrected, plus an additional summarizing figure (Appendix B) include

    Spin state transition in LaCoO3 by variational cluster approximation

    Full text link
    The variational cluster approximation is applied to the calculation of thermodynamical quantities and single-particle spectra of LaCoO3. Trial self-energies and the numerical value of the Luttinger-Ward functional are obtained by exact diagonalization of a CoO6 cluster. The VCA correctly predicts LaCoO3 as a paramagnetic insulator and a gradual and relatively smooth increase of the occupation of high-spin Co3+ ions causes the temperature dependence of entropy and magnetic susceptibility. The single particle spectral function agrees well with experiment, the experimentally observed temperature dependence of photoelectron spectra is reproduced satisfactorily. Remaining discrepancies with experiment highlight the importance of spin orbit coupling and local lattice relaxation.Comment: Revtex file with 10 eps figure

    Joint effect of lattice interaction and potential fluctuation in colossal magnetoresistive manganites

    Full text link
    Taking into account both the Jahn-Teller lattice distortion and the on-site electronic potential fluctuations in the orbital-degenerated double-exchange model, in which both the core-spin and the lattice distortion are treated classically, we investigate theoretically the metal-insulator transition (MIT) in manganites by considering the electronic localization effect. An inverse matrix method is developed for calculation in which we use the inverse of the transfer matrix to obtain the localization length. We find that within reasonable range of parameters, both the lattice effect and the potential fluctuation are responsible to the occurrence of the MIT. The role of the orbital configuration is also discussed.Comment: 4 figure

    Correlated band structure of NiO, CoO and MnO by variational cluster approximation

    Full text link
    The variational cluster approximation proposed by Potthoff is applied to the calculation of the single-particle spectral function of the transition metal oxides MnO, CoO and NiO. Trial self-energies and the numerical value of the Luttinger-Ward functional are obtained by exact diagonalization of a TMO6-cluster. The single-particle parameters of this cluster serve as variational parameters to construct a stationary point of the grand potential of the lattice system. The stationary point is found by a crossover procedure which allows to go continuously from an array of disconnected clusters to the lattice system. The self-energy is found to contain irrelevant degrees of freedom which have marginal impact on the grand potential and which need to be excluded to obtain meaningful results. The obtained spectral functions are in good agreement with experimental data.Comment: 14 pages, 17 figure

    Traveling sealer for contoured table Patent

    Get PDF
    Sealing apparatus for joining two pieces of frangible material

    QCD and QED dynamics of the EMC effect

    Full text link
    Applying exact QCD sum rules for the baryon charge and energy-momentum we demonstrate that if nucleons are the only degrees of freedom of nuclear wave function, the structure function of a nucleus would be the additive sum of the nucleon distributions at the same Bjorken x = AQ^2/2(p_Aq)< 0.5 up to very small Fermi motion corrections if x>0.05. Thus the difference of the EMC ratio from one reveals the presence of non-nucleonic degrees of freedom in nuclei. Using exact QCD sum rules we show that the ratio R_A(x_p,Q^2) used in experimental studies, where x_p = Q^2/2q_0 m_p deviates from one even if a nucleus consists of nucleons with small momenta only. Use of the Bjorken x leads to additional decrease of R_A(x,Q^2) as compared to the x_p plots. Coherent contribution of equivalent photons into photon component of parton wave function of a nucleus unambiguously follows from Lorentz transformation of the rest frame nucleus Coulomb field. For A~200 photons carry ~0.0065 fraction of the light momentum of nucleus almost compensates the difference between data analysis in terms of Bjorken x and x_p. Different role of higher twist effects for Q^2 probed at electron and muon beams is emphasized. Direct observations of large and predominantly nucleonic short-range correlations in nuclei pose a serious challenge for most of the models of the EMC effect for x>0.6. The data are consistent with a scenario in which the hadronic EMC effect reflects fluctuations of inter nucleon interaction due to fluctuations of color distribution in the interacting nucleons. The dynamic realization of this scenario is the model in which the 3q (3qg) configurations with x > 0.5 parton have a weaker interaction with nearby nucleons, leading to suppression of such configurations giving a right magnitude of the EMC effect. The directions for the future studies and challenging questions are outlined.Comment: The sign in the relation of x_Bj and x_p is corrected and the following discussion is adjusted accordingly. Discussion of the higher twist effects is adde

    Quantum-Dot Cellular Automata using Buried Dopants

    Full text link
    The use of buried dopants to construct quantum-dot cellular automata is investigated as an alternative to conventional electronic devices for information transport and elementary computation. This provides a limit in terms of miniaturisation for this type of system as each potential well is formed by a single dopant atom. As an example, phosphorous donors in silicon are found to have good energy level separation with incoherent switching times of the order of microseconds. However, we also illustrate the possibility of ultra-fast quantum coherent switching via adiabatic evolution. The switching speeds are numerically calculated and found to be 10's of picoseconds or less for a single cell. The effect of decoherence is also simulated in the form of a dephasing process and limits are estimated for operation with finite dephasing. The advantages and limitations of this scheme over the more conventional quantum-dot based scheme are discussed. The use of a buried donor cellular automata system is also discussed as an architecture for testing several aspects of buried donor based quantum computing schemes.Comment: Minor changes in response to referees comments. Improved section on scaling and added plot of incoherent switching time

    Volume of the quantum mechanical state space

    Full text link
    The volume of the quantum mechanical state space over nn-dimensional real, complex and quaternionic Hilbert-spaces with respect to the canonical Euclidean measure is computed, and explicit formulas are presented for the expected value of the determinant in the general setting too. The case when the state space is endowed with a monotone metric or a pull-back metric is considered too, we give formulas to compute the volume of the state space with respect to the given Riemannian metric. We present the volume of the space of qubits with respect to various monotone metrics. It turns out that the volume of the space of qubits can be infinite too. We characterize those monotone metrics which generates infinite volume.Comment: 17 page

    Spin-dependent transport in molecular tunnel junctions

    Full text link
    We present measurements of magnetic tunnel junctions made using a self-assembled-monolayer molecular barrier. Ni/octanethiol/Ni samples were fabricated in a nanopore geometry. The devices exhibit significant changes in resistance as the angle between the magnetic moments in the two electrodes is varied, demonstrating that low-energy electrons can traverse the molecular barrier while maintaining spin coherence. An analysis of the voltage and temperature dependence of the data suggests that the spin-coherent transport signals can be degraded by localized states in the molecular barriers.Comment: 4 pages, 5 color figure
    corecore