275 research outputs found

    Trigger, an active release experiment that stimulated auroral particle precipitation and wave emissions

    Get PDF
    The experiment design, including a description of the diagnostic and chemical release payload, and the general results are given for an auroral process simulation experiment. A drastic increase of the field aligned charged particle flux was observed over the approximate energy range 10 eV to more than 300 keV, starting about 150 ms after the release and lasting about one second. The is evidence of a second particle burst, starting one second after the release and lasting for tens of seconds, and evidence for a periodic train of particle bursts occurring with a 7.7 second period from 40 to 130 seconds after the release. A transient electric field pulse of 200 mv/m appeared just before the particle flux increase started. Electrostatic wave emissions around 2 kHz, as well as a delayed perturbation of the E-region below the plasma cloud were also observed. Some of the particle observations are interpreted in terms of field aligned electrostatic acceleration a few hundred kilometers above the injected plasma cloud. It is suggested that the acceleration electric field was created by an instability driven by field aligned currents originating in the plasma cloud

    Sounding of the Cleft Ion Fountain Energization Region

    Get PDF
    The objectives of the ground-based observations in support of the SCIFER are: Acquire and display ionospheric conditions prior to launch to aid in the establishment of launch criteria in real time. Observers at both stations participated in real-time visual interpretation. Solar wind data from IMP-8 and WIND were acquired and interpreted in real time. Telephonic and data links were established at the observatory for the launch window period. Ground-based observatory countdown and launch criteria were developed. 2) Relate optical and magnetic ionospheric signatures observed from the ground to magnetospheric boundaries in the energetic particle flux measured at the payload. The energetic electron trapping boundary was found to correspond to the equatorward edge of the discrete auroral arcs forming the dayside aurora. The energetic electron trapping boundary was found to correspond to the poleward edge of pulsating aurora. The pulsating aurora was found to correspond to one second bursts of energy-dispersed electrons originating in the equatorial plane. Pulsations at larger intervals corresponded to travel times to the conjugate region and return. The pulsating aurora was also directly linked to the geomagnetic pulsations and traveling magnetic vortices, all occurring equatorward of the trapping boundary. 630 nm emission corresponding to less than 10 eV electron precipitation was observed equatorward of the trapping boundary (L=15) and ascribed to photoelectrons from the sunlit conjugate region. 3) Aid in the interpretation of time/space incongruities in the rocket data. The motion of the payload conjugate across the aurora showed that the payload passed over three distinct arc systems on the poleward side of the trapping boundary. These results were reported in a series of articles to be printed in Geophysical Research Letters on June 15, l996

    Role of isospin dependent mean field in pion production in heavy ion reactions

    Get PDF
    The importance of a isospin dependent nuclear mean field (IDMF) in regard to the pion production mechanism is studied for the reaction Au+AuAu+Au at 1 GeV/nucleon using the Quantum Molecular Dynamics (QMD) model. In particular, the effect of the IDMF on pion spectra and the charged pion ratio are analyzed. It is found that the inclusion of a IDMF considerably suppresses the lowpt-p_t pions, thus, leading to a better agreement with the data on pion spectra. Moreover, the rapidity distribution of the charged pion ratio appears to be sensitive to the isospin dependence of the nuclear mean field.Comment: 16 pages, using RevTex, 6 PS-Figure

    Preferential heating of light ions during an ionospheric Ar(+) injection experiment

    Get PDF
    The Argon Release for Controlled Studies (ARCS) 4 sounding rocket was launched northward into high altitude from Poker Flat Research Range on February 23, 1990. The vehicle crossed geomagnetic field lines containing discrete auroral activity. An instrumented subpayload released 100-eV and 200-eV Ar(+) ion beams sequentially, in a direction largely perpendicular to both the local geomagnetic field and the subpayload spin axis. The instrumented main payload was separated along field lines from the beam emitting subpayload by a distance which increased at a steady rate of approximately 2.4 m/s. Three dimensional mass spectrometric ion observations of ambient H(+) and O(+) ions, obtained on board the main payload, are presented. Main payload electric field observations in the frequency range 0-16 kHz, are also presented. These observations are presented to demonstrate the operation of transverse ion acceleration, which was differential with respect to ion mass, primarily during 100-eV beam operations. The preferential transverse acceleration of ambient H(+) ions, as compared with ambient O(+) ions, during the second, third, fourth, and fifth 100-eV beam operations, is attributed to a resonance among the injected Ar(+) ions, beam-generated lower hybrid waves, and H(+) ions in the tail of the ambient thermal distribution. This work provides experimental support of processes predicted by previously published theory and simulations

    Sounding rocket study of two sequential auroral poleward boundary intensifications

    Get PDF
    The Cascades-2 sounding rocket was launched on 20 March 2009 at 11:04:00 UT from the Poker Flat Research Range in Alaska, and flew across a series of poleward boundary intensifications (PBIs). The rocket initially crosses a diffuse arc, then crosses the equatorward extent of one PBI (a streamer), and finally crosses the initiation of a separate PBI before entering the polar cap. Each of the crossings have fundamentally different in situ electron energy and pitch angle structure, and different ground optics images of visible aurora. It is found that the diffuse arc has a quasi-static acceleration mechanism, and the intensification at the poleward boundary has an Alfvénic acceleration mechanism. The streamer shows characteristics of both types of acceleration. PFISR data provide ionospheric context for the rocket observations. Three THEMIS satellites in close conjunction with the rocket foot point show earthward flows and slight dipolarizations in the magnetotail associated with the in situ observations of PBI activity. An important goal of the Cascades-2 study is to bring together the different observational communities (rocket, ground cameras, ground radar, satellite) with the same case study. The Cascades-2 experiment is the first sounding rocket observation of a PBI sequence, enabling a detailed investigation of the electron signatures and optical aurora associated with various stages of a PBI sequence as it evolves from an Alfvénic to a more quasi-static structure

    Electron temperature in the cusp as measured with the SCIFER-2 sounding rocket

    Get PDF
    It is expected that energy deposited by soft auroral electron precipitation in the ionosphere should result in heating of ionospheric electrons in that location, and this heating is an important step in the ion outflow process. We present coordinated observations from the SCIFER-2 sounding rocket in the cusp region overflying optical observing sites in Svalbard. The rocket payload included a sensor which is designed to measure the temperature of thermal electrons. We show that elevated electron temperatures measured in situ are correlated with electron precipitation as inferred from auroral emissions during the 60–120 s preceding the passage of the rocket. This integrated “cooking time” is an important factor in determining the origin and resulting flux of outflowing ions

    Laying the groundwork at the AGS: Recent results from experiment E895

    Full text link
    The E895 Collaboration at the Brookhaven AGS has performed a systematic investigation of Au+Au collisions at 2-8 AGeV, using a large-acceptance Time Projection Chamber. In addition to extensive measurements of particle flow, spectra, two-particle interferometry, and strangeness production, we have performed novel hybrid analyses, including azimuthally-sensitive pion HBT, extraction of the six-dimensional pion phasespace density, and a first measurement of the Lambda-proton correlation function.Comment: Presented at Quark Matter 2001, 8 pages, 5 figure

    Longitudinal Flow of Protons from 2-8 AGeV Central Au+Au Collisions

    Full text link
    Rapidity distributions of protons from central 197^{197}Au + 197^{197}Au collisions measured by the E895 Collaboration in the energy range from 2 to 8 AGeV at the Brookhaven AGS are presented. Longitudinal flow parameters derived using a thermal model including collective longitudinal expansion are extracted from these distributions. The results show an approximately linear increase in the longitudinal flow velocity, L_{L}, as a function of the logarithm of beam energy.Comment: 5 Pages, including 3 figures, 1 tabl

    Charged Pion Production in 2 to 8 AGeV Central Au+Au Collisions

    Full text link
    Momentum spectra of charged pions over nearly full rapidity coverage from target to beam rapidity have been measured in the 0-5% most central Au+Au collisions in the beam energy range from 2 to 8 AGeV by the E895 Experiment. Using a thermal parameterization to fit the transverse mass spectra, rapidity density distributions are extracted. The observed spectra are compared with predictions from the RQMD v2.3 cascade model and also to a thermal model including longitudinal flow. The total 4π\pi yields of the charged pions are used to infer an initial state entropy produced in the collisions.Comment: 13 pgs, 19 figs, accepted by Phys. Rev. C. Data tables available at http://nuclear.ucdavis.edu/~e895/published_spectra.htm

    Near-threshold production of the multi-strange Ξ\Xi^- hyperon

    Get PDF
    The yield for the multi-strange Ξ\Xi^{-} hyperon has been measured in 6 AGeV Au+Au collisions via reconstruction of its decay products π\pi^{-} and Λ\Lambda, the latter also being reconstructed from its daughter tracks of π\pi^{-} and p. The measurement is rather close to the threshold for Ξ\Xi^{-} production and therefore provides an important test of model predictions. The measured yield for Ξ\Xi^{-} and Λ\Lambda are compared for several centralities. In central collisions the Ξ\Xi^{-} yield is found to be in excellent agreement with statistical and transport model predictions, suggesting that multi-strange hadron production approaches chemical equilibrium in high baryon density nuclear matter.Comment: Submitted to PR
    corecore