3,321 research outputs found

    Interactions Between Convective Storms and Their Environment

    Get PDF
    The ways in which intense convective storms interact with their environment are considered for a number of specific severe storm situations. A physical model of subcloud wind fields and vertical wind profiles was developed to explain the often observed intensification of convective storms that move along or across thermal boundaries. A number of special, unusually dense, data sets were used to substantiate features of the model. GOES imagery was used in conjunction with objectively analyzed surface wind data to develop a nowcast technique that might be used to identify specific storm cells likely to become tornadic. It was shown that circulations associated with organized meso-alpha and meso-beta scale storm complexes may, on occasion, strongly modify tropospheric thermodynamic patterns and flow fields

    Report from ionospheric science

    Get PDF
    The general strategy to advance knowledge of the ionospheric component of the solar terrestrial system should consist of a three pronged attack on the problem. Ionospheric models should be refined by utilization of existing and new data bases. The data generated in the future should emphasize spatial and temporal gradients and their relation to other events in the solar terrestrial system. In parallel with the improvement in modeling, it will be necessary to initiate a program of advanced instrument development. In particular, emphasis should be placed on the area of improved imaging techniques. The third general activity to be supported should be active experiments related to a better understanding of the basic physics of interactions occurring in the ionospheric environment. These strategies are briefly discussed

    Instrument manual for the retarding ion mass spectrometer on Dynamics Explorer-1

    Get PDF
    The retarding ion mass spectrometer (RIMS) for Dynamics Explorer-1 is an instrument designed to measure the details of the thermal plasma distribution. It combines the ion temperature determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram direction. This manual provides a functional description of the RIMS, the instrument calibration, and a description of the commands which can be stored in the instrument logic to control its operation

    The swept angle retarding mass spectrometer: Initial results from the Michigan auroral probe sounding rocket

    Get PDF
    Data from a sounding rocket flight of the swept angle retarding ion mass spectrometer (SARIMS) are presented to demonstrate the capability of the instrument to make measurements of thermal ions which are differential in angle, energy, and mass. The SARIMS was flown on the Michigan auroral probe over regions characterized first by discrete auroral arcs and later by diffuse precipitation. The instrument measured the temperature, densities, and flow velocities of the ions NO(+) and O(+). Measured NO(+) densities ranged from 10 to the 5th power up to 3 x 10 to the 5th power ions/cu cm, while the measured O(+) densities were a factor of 5-10 less. Ion temperatures ranged from 0.15 up to 0.33 eV. Eastward ion flows approximately 0.5 km/sec were measured near the arcs, and the observed flow magnitude decreased markedly inside the arcs

    Report from magnetospheric science

    Get PDF
    By the early 1990s, magnetospheric physics will have progressed primarily through observations made from Explorer-class spacecraft, sounding rockets, ground based facilities, and shuttle based experiments. The global geospace science (GGS) element of the International Solar Terrestrial Physics program, when combined with contributions to the ESA Cluster mission and ground based and computer modeling programs, will form the basis for a major U.S. initiative in magnetospheric physics. The scientific objectives of the GGS program involve the study of energy transport throughout geospace. The Cluster mission will investigate turbulence and boundary phenomena in geospace, particularly at high latitudes on the dayside and in the region of the neutral sheet at geocentric distances of about 20 earth radii on the night side of the earth. The current state of knowledge is reviewed and the goals of these missions are briefly discussed

    The retarding ion mass spectrometer on dynamics Explorer-A

    Get PDF
    An instrument designed to measure the details of the thermal plasma distribution combines the ion temperature-determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram directions. The retarding ion mass spectrometer, its operational modes and calibration are described as well as the data reduction plan, and the anticipated results

    Boldness traits, not dominance, predict exploratory flight range and homing behaviour in homing pigeons

    Get PDF
    This study investigated whether consistent individual differences in behaviour (particularly exploratory tendency and object neophilia) were associated with the tendency to explore in free-ranging scenarios. This was tested in homing pigeons. The results showed that birds that were more likely to explore in the loft were also more likely to explore the local area during self-driven flights. When birds were released from a fixed release points, those which had explored less took more tortuous and longer routes back to the loft. This demonstrates the cost associated with lack of exploratory behaviour, and also links traits measured in laboratory scenarios to behaviour in free-ranging animals

    Detecting Delamination via Nonlinear Wave Scattering in a Bonded Elastic Bar

    Full text link
    In this paper we examine the effect of delamination on wave scattering, with the aim of creating a control measure for layered waveguides of various bonding types. Previous works have considered specific widths of solitary waves for the simulations, without analysing the effect of changing the soliton parameters. We consider two multi-layered structures: one containing delamination "sandwiched" by perfect bonding and one containing delamination but "sandwiched" by soft bonding. These structures are modelled by coupled Boussinesq-type equations. Matched asymptotic multiple-scale expansions lead to coupled Ostrovsky equations in soft bonded regions and Korteweg-De Vries equations in the perfectly bonded and delaminated region. We use the Inverse Scattering Transform to predict the behaviour in the delaminated regions. In both cases, numerical analysis shows that we can predict the delamination length by changes in the wave structure, and that these changes depend upon the Full Width at Half Magnitude (FWHM) of the incident soliton. In the case of perfect bonding, we derive a theoretical prediction for the change and confirm this numerically. For the soft bonding case, we numerically identify a similar relationship using the change in amplitude. Therefore we only need to compute one curve to determine the behaviour for any incident solitary wave, creating a framework for designing measurement campaigns for rigorously testing the integrity of layered structures.Comment: 12 pages, 7 figure
    • …
    corecore