979 research outputs found

    Jeans Instability of Palomar 5's Tidal Tail

    Full text link
    Tidal tails composed of stars should be unstable to the Jeans instability and this can cause them to look like beads on a string. The Jeans wavelength and tail diameter determine the wavelength and growth rate of the fastest growing unstable mode. Consequently the distance along the tail to the first clump and spacing between clumps can be used to estimate the mass density in the tail and its longitudinal velocity dispersion. Clumps in the tidal tails of the globular cluster Palomar 5 could be due to Jeans instability. We find that their spacing is consistent with the fastest growing mode if the velocity dispersion in the tail is similar to that in the cluster itself. While all tidal tails should exhibit gravitational instability, we find that clusters or galaxies with low concentration parameters are most likely to exhibit short wavelength rapidly growing Jeans modes in their tidal tails.Comment: sumbmitted to MNRA

    Disk heating by more than one spiral density wave

    Full text link
    We consider a differentially rotating, 2D stellar disk perturbed by two steady state spiral density waves moving at different patterns speeds. Our investigation is based on direct numerical integration of initially circular test-particle orbits. We examine a range of spiral strengths and spiral speeds and show that stars in this time dependent gravitational field can be heated (their random motions increased).This is particularly noticeable in the simultaneous propagation of a 2-armed spiral density wave near the corotation resonance (CR), and a weak 4-armed one near the inner and outer 4:1 Lindblad resonances. In simulations with 2 spiral waves moving at different pattern speeds we find: (1) the variance of the radial velocity, sigma_R^2, exceeds the sum of the variances measured from simulations with each individual pattern; (2) sigma_R^2 can grow with time throughout the entire simulation; (3) sigma_R^2 is increased over a wider range of radii compared to that seen with one spiral pattern; (4) particles diffuse radially in real space whereas they don't when only one spiral density wave is present. Near the CR with the stronger, 2-armed pattern, test particles are observed to migrate radially. These effects take place at or near resonances of both spirals so we interpret them as the result of stochastic motions. This provides a possible new mechanism for increasing the stellar velocity dispersion in galactic disks. If multiple spiral patterns are present in the Galaxy we predict that there should be large variations in the stellar velocity dispersion as a function of radius.Comment: 20 pages, 13 figures. Submitted to MNRA
    corecore