27 research outputs found

    Studies of inactivation mechanism of non-enveloped icosahedral virus by a visible ultrashort pulsed laser

    Get PDF
    BACKGROUND: Low-power ultrashort pulsed (USP) lasers operating at wavelengths of 425 nm and near infrared region have been shown to effectively inactivate viruses such as human immunodeficiency virus (HIV), M13 bacteriophage, and murine cytomegalovirus (MCMV). It was shown previously that non-enveloped, helical viruses such as M13 bacteriophage, were inactivated by a USP laser through an impulsive stimulated Raman scattering (ISRS) process. Recently, enveloped virus like MCMV has been shown to be inactivated by a USP laser via protein aggregation induced by an ISRS process. However, the inactivation mechanism for a clinically important class of viruses – non-enveloped, icosahedral viruses remains unknown. RESULTS AND DISCUSSIONS: We have ruled out the following four possible inactivation mechanisms for non-enveloped, icosahedral viruses, namely, (1) inactivation due to ultraviolet C (UVC) photons produced by non-linear optical process of the intense, fundamental laser beam at 425 nm; (2) inactivation caused by thermal heating generated by the direct laser absorption/heating of the virion; (3) inactivation resulting from a one-photon absorption process via chromophores such as porphyrin molecules, or indicator dyes, potentially producing reactive oxygen or other species; (4) inactivation by the USP lasers in which the extremely intense laser pulse produces shock wave-like vibrations upon impact with the viral particle. We present data which support that the inactivation mechanism for non-enveloped, icosahedral viruses is the impulsive stimulated Raman scattering process. Real-time PCR experiments show that, within the amplicon size of 273 bp tested, there is no damage on the genome of MNV-1 caused by the USP laser irradiation. CONCLUSION: We conclude that our model non-enveloped virus, MNV-1, is inactivated by the ISRS process. These studies provide fundamental knowledge on photon-virus interactions on femtosecond time scales. From the analysis of the transmission electron microscope (TEM) images of viral particles before and after USP laser irradiation, the locations of weak structural links on the capsid of MNV-1 were revealed. This important information will greatly aid our understanding of the structure of non-enveloped, icosahedral viruses. We envision that this non-invasive, efficient viral eradication method will find applications in the disinfection of pharmaceuticals, biologicals and blood products in the near future

    Theory of optical spectra of polar quantum wells: Temperature effects

    Full text link
    Theoretical and numerical calculations of the optical absorption spectra of excitons interacting with longitudinal-optical phonons in quasi-2D polar semiconductors are presented. In II-VI semiconductor quantum wells, exciton binding energy can be tuned on- and off-resonance with the longitudinal-optical phonon energy by varying the quantum well width. A comprehensive picture of this tunning effect on the temperature-dependent exciton absorption spectrum is derived, using the exciton Green's function formalism at finite temperature. The effective exciton-phonon interaction is included in the Bethe-Salpeter equation. Numerical results are illustrated for ZnSe-based quantum wells. At low temperatures, both a single exciton peak as well as a continuum resonance state are found in the optical absorption spectra. By contrast, at high enough temperatures, a splitting of the exciton line due to the real phonon absorption processes is predicted. Possible previous experimental observations of this splitting are discussed.Comment: 10 pages, 9 figures, to appear in Phys. Rev. B. Permanent address: [email protected]

    Structural Study of Cu Photodoped Ge-S Glasses

    No full text
    The products formed by Cu photodiffusion in GeS2 films are investigated. Rutherford backscattering spectrometry shows that for the experimental conditions used photodiffusion results in the introduction of 17.4 at. % Cu into the chalcogenide glass matrix. The diffusion product are analyzed by means of X-ray diffraction which reveals the formation of Cu2GeS3. Raman spectra show the considerable influence of Cu on the structure of the hosting glass which we relate to the incorporation of fourfold coordinated Cu into the glass matrix. Annealing of the films at 300°C and 430°C was also studied to determine the thermal stability of the ternary

    New Functionality of Chalcogenide Glasses for Radiation Sensing of Nuclear Wastes

    No full text
    Data about gamma radiation induced effects in Ge40Se60 chalcogenide thin films and radiation induced silver diffusion within these are presented. Blanket films and devices were created to study the structural changes, diffusion products, and device performance. Raman spectroscopy, X-ray Diffraction, current vs. voltage (I-V) and impedance measurements expound the behavior of Ge40Se60 glass and silver diffusion within this glass under radiation. Raman study shows that there is a decrease in the area ratio between edge shared and corner shared structural units revealing structural reorganization occurring in the glasses as a result of gamma radiation. X-ray Diffraction studies revealed that with sufficiently radiation dose it is also possible to create Ag2Se in selenium-depleted systems. Oxidation of the Ge enriched chalcogenide backbone is confirmed through the electrical performance of the sensing elements based on these films. Combination of these structural and diffusion products influences the device performance. The I-V behavior is characterized by increase in current and then stabilization as a function of radiation dose. Additionally, device modeling is also presented using Silvaco software and analytical methods to shed light on the device behavior. This type of sensor design and material characterizations facilitate in improving the radiation sensing capabilities of silver containing chalcogenide glass thin films
    corecore