356 research outputs found

    Pressure induced magnetic phase separation in La0.75_{0.75}Ca0.25_{0.25}MnO3_{3} manganite

    Full text link
    The pressure dependence of the Curie temperature TC(P)_{C}(P) in La0.75_{0.75}Ca0.25_{0.25}MnO3_{3} was determined by neutron diffraction up to 8 GPa, and compared with the metallization temperature TIM(P)_{IM}(P) \cite{irprl}. The behavior of the two temperatures appears similar over the whole pressure range suggesting a key role of magnetic double exchange also in the pressure regime where the superexchange interaction is dominant. Coexistence of antiferromagnetic and ferromagnetic peaks at high pressure and low temperature indicates a phase separated regime which is well reproduced with a dynamical mean-field calculation for a simplified model. A new P-T phase diagram has been proposed on the basis of the whole set of experimental data.Comment: 5 pages, 4 figure

    Raman spectroscopy study of the interface structure in (CaCuO2)n/(SrTiO3)m superlattices

    Full text link
    Raman spectra of CaCuO2/SrTiO3 superlattices show clear spectroscopic marker of two structures formed in CaCuO2 at the interface with SrTiO3. For non-superconducting superlattices, grown in low oxidizing atmosphere, the 425 cm-1 frequency of oxygen vibration in CuO2 planes is the same as for CCO films with infinite layer structure (planar Cu-O coordination). For superconducting superlattices grown in highly oxidizing atmosphere, a 60 cm-1 frequency shift to lower energy occurs. This is ascribed to a change from planar to pyramidal Cu-O coordination because of oxygen incorporation at the interface. Raman spectroscopy proves to be a powerful tool for interface structure investigation

    A Framework to Develop Urban Aerial Networks by Using a Digital Twin Approach

    Get PDF
    The new concept of Urban Air Mobility (UAM) and the emergent unmanned aerial vehicles are receiving more and more attention by several stakeholders for implementing new transport solutions. However, there are several issues to solve in order to implement successful UAM systems. Particularly, setting a suitable framework is central for including this new transportation system into the existing ones—both ground and aerial systems. Regulation and definition of aerial networks, but also the characterization of ground facilities (vertiports) to allow passengers and freight to access the services are among the most relevant issues to be discussed. To identify UAM transportation networks, suitably connected with ground transportation services, digital twin models could be adopted to support the modelling and simulation of existing—and expected—scenarios with constantly updated data for identifying solutions addressing the design and management of transport systems. In this perspective, a digital twin model applied to an existing urban context—the city of Bologna, in northern Italy—is presented in combination with a novel air transport network that includes the third dimension. The 3D Urban Air Network tries to satisfy the principle of linking origin/destination points by ensuring safe aerial paths and suitable aerial vehicle separations. It involves innovative dynamic links powered by a heuristic cost function. This work provides the initial framework to explore the integration of UAM services into realistic contexts, by avoiding the costs associated with flight simulations in reality. Moreover, it can be used for holistic analyses of UAM systems

    A comprehensive approach to assess transportation system resilience towards disruptive events. Case study on airside airport systems

    Get PDF
    Transportation system resilience towards events that disrupt system scheduling and nominal functioning is a key challenge for both planners and transport operators. The development of effective policies to enhance resilience requires the analysis of the relationships between the type of disruptive event, the characteristics of the transport system under analysis and its response. This paper aims to contribute to this topic by providing some vulnerability and resilience indices for a complex transport node (airport) within a comprehensive framework based on an element-by-element approach able to identify both disturbances for which transportation systems are more vulnerable (or more resilient) and responses in terms of vulnerability and resilience. Infrastructural, organizational and technological transportation system elements that are more likely affected by given disruptions are the starting point for clustering possible disruptive events. The approach has been tested by simulating four European airports, for which the effects of different types of disruption have been discussed. The obtained results show that the responses of transport system elements to the same type of disruptive events may be different, according to several factors depending on both system features and use of resources. Furthermore, the duration of the disturbance may be relevant for the system vulnerability, while resilience and vulnerability do not necessarily vary in the same way

    Evidence of a pressure-induced metallization process in monoclinic VO2_2

    Full text link
    Raman and combined trasmission and reflectivity mid infrared measurements have been carried out on monoclinic VO2_2 at room temperature over the 0-19 GPa and 0-14 GPa pressure ranges, respectively. The pressure dependence obtained for both lattice dynamics and optical gap shows a remarkable stability of the system up to P*\sim10 GPa. Evidence of subtle modifications of V ion arrangements within the monoclinic lattice together with the onset of a metallization process via band gap filling are observed for P>>P*. Differently from ambient pressure, where the VO2_2 metal phase is found only in conjunction with the rutile structure above 340 K, a new room temperature metallic phase coupled to a monoclinic structure appears accessible in the high pressure regime, thus opening to new important queries on the physics of VO2_2.Comment: 5 pages, 3 figure

    Exploiting SERS sensitivity to monitor DNA aggregation properties

    Get PDF
    In the last decades, DNA has been considered far more than the system carrying the essential genetic instructions. Indeed, because of the remarkable properties of the base-pairing specificity and thermoreversibility of the interactions, DNA plays a central role in the design of innovative architectures at the nanoscale. Here, combining complementary DNA strands with a custom-made solution of silver nanoparticles, we realize plasmonic aggregates to exploit the sensitivity of Surface Enhanced Raman Spectroscopy (SERS) for the identification/detection of the distinctive features of DNA hybridization, both in solution and on dried samples. Moreover, SERS allows monitoring the DNA aggregation process by following the temperature variation of a specific spectroscopic marker associated with the Watson-Crick hydrogen bond formation. This temperature-dependent behavior enables us to precisely reconstruct the melting profile of the selected DNA sequences by spectroscopic measurements only

    Paediatric non-alcoholic fatty liver disease: impact on patients and mothers' quality of life

    Get PDF
    Background: Non-alcoholic fatty liver disease (NAFLD) is one of the causes of fatty liver in adults and is currently the primary form of chronic liver disease in children and adolescents. However, the psychological outcome (i.e. the behavioural problems that can in turn be related to psychiatric conditions, like anxiety and mood disorders, or lower quality of life) in children and adolescents suffering of NAFLD has not been extensively explored in the literature. Objectives: The present study aims at evaluating the emotional and behavioural profile in children suffering from NAFLD and the quality of life in their mothers. Patients and Methods: A total of 57 children (18 females/39 males) with NAFLD were compared to 39 age-matched control children (25 females/14 males). All participants were submitted to the following psychological tools to assess behavior, mood, and anxiety: the Multidimensional Anxiety Scale for Children (MASC), the Child Behavior Checklist (CBCL), and the Children's Depression Inventory (CDI). Moreover, the mothers of 40 NAFLD and 39 control children completed the World Health Organization Quality of Life-BREF (WHOQOL-BREF) questionnaire. Results: NAFLD children scored significantly higher as compared to control children in MASC (P = 0.001) and CDI total (P < 0.001) scales. The CBCL also revealed significantly higher scores for NAFLD children in total problems (P = 0.046), internalizing symptoms (P = 0.000) and somatic complaints (P < 0.001). The WHOQOL-BREF revealed significantly lower scores for the mothers of NAFLD children in the overall perception of the quality of life (P < 0.001), and in the "relationships" domain (P = 0.023). Conclusions: Increased emotional and behavioural problems were detected in children with NAFLD as compared to healthy control children, together with an overall decrease in their mothers' quality of life. These results support the idea that these patients may benefit from a psychological intervention, ideally involving both children and parents, whose quality of life is likely negatively affected by this disease

    Imaging diagnostics coupled with non-invasive and micro-invasive analyses for the restoration of ethnographic artifacts from French Polynesia

    Get PDF
    In this paper, two different objects from the ethnographic collection of the museum of the Congregation of the Sacred Hearts of Jesus and Mary (Rome), a Polynesian barkcloth (tapa) and a Polynesian headdress in feathers (pa’e ku’a), were investigated to characterize the materials, to evaluate their state of conservation and address the restoration activities. Imaging methods such as multispectral imaging, 3D ultraviolet induced fluorescence and scanning electron microscopy have been integrated with analytical techniques such as X-ray fluorescence spectroscopy, Fourier transform infrared and surface enhanced Raman spectroscopy. Imaging investigations allowed us to differentiate constitutive materials and study their distribution, such as the yellow dye in the tapa used to trace the geometrical pattern and the psittacofulvins responsible for the feathers’ colors in the headdress. The combination of molecular spectroscopy, supported by observation under a scanning electron microscope, allowed us to propose a characterization of the organic painting materials (Morinda citrifolia, Curcuma longa) used for the tapa, and of the type of feathers (from Vini kuhlii bird) and vegetal fibers (Cocos nucifera L.) used to realize the headdress, as well as enabling the identification of degradation products and microorganisms affecting the artifacts before restoration. Fourier transform infrared spectroscopy detected the organic materials used as adhesives for the tapa and headdress: a polysaccharide, probably starch, for the tapa and a natural rubber from Cerbera manghas L. for the headdress. The results of the multi-analytic diagnostic campaign enabled the choice of proper restoration materials, compatible with the original ones, and helped us develop effective protocols for the artifacts’ conservation, such as laser cleaning of the feathers

    DNA-functionalized gold nanoparticle assemblies for Surface Enhanced Raman Scattering

    Get PDF
    The programmable assembly of DNA strands is a promising tool for building tailored bottom-up nanostructures. Here, we present a plasmonic nanosystem obtained by the base-pairing mediated aggregation of gold nanoparticles (NPs) which are separately functionalized with two different single-stranded DNA chains. Their controlled assembly is mediated by a complementary DNA “bridge” sequence. We monitor the formation of DNA assembled NP aggregates in solution, and we study their Surface Enhanced Raman Scattering (SERS) response by comparison with the single NP constituents. We interpret the revealed SERS signatures in terms of the molecular and NP organization at the nanoscale, demonstrating that the action of the DNA bridge molecule yields regular NP aggregates with controlled interparticle distance and reproducible SERS response. In perspective, this demonstrates the potential of the present system as a stable, biocompatible, and recyclable SERS sensor
    corecore