113 research outputs found

    Hydrogeological insights and modelling for sustainable use of a stressed carbonate aquifer in the Mediterranean area. From passive withdrawals to active management

    Get PDF
    Study area: Venafro Mts., southern-central Italy, Mediterranean basin. Study focus: Via a collection of geological and hydrogeological data, a flow conceptual model of a carbonate aquifer has been coupled with a numerical model via MODFLOW code and Unsaturated Zone Flow (UZF) package in steady state and transient conditions. Simulation is further implemented with different management scenarios, for facing possible emergencies due to recharge decrease, also simulating a drastic water abstraction cut-off. New hydrological insights for the region: Carbonate fractured aquifers are a strategic water resource in the whole Mediterranean area, supplying major metropolitan areas. Despite these huge extensions, such groundwater systems are threatened by increasing drought occurrence and significant human water abstraction. A characterization of a carbonate fractured aquifer (370 km2) located in central-southern Italy has been performed. Venafro Mts. Aquifer (VMA) hosts a strategic resource for the Western Campania Waterworks (WCW) that supplies the populous metropolitan area of Naples, with 3.8 million inhabitants. VMA shows a slow response, with recovery time estimated at the decennial scale, testifying its limited resilience to natural and human pressures. A shift is proposed from passive management to a more comprehensive concept of smart-water monitoring, applied not only to waterworks and pipelines, but also to groundwater resources in the environment

    Groundwater recharge distribution due to snow cover in shortage conditions (2019–22) on the Gran Sasso carbonate aquifer (Central Italy)

    Get PDF
    Aquifer recharge by the snowpack is relevant to be assessed to evaluate groundwater availability in mountainous karst regions. The recharge due to snowpack in the Gran Sasso aquifer has previously been estimated through an empirical approach using elevation gradients. To validate and quantify the coverage and persistence of the snowpack over time through an objective method, satellite images have been analysed. The Campo Imperatore plain, the endorheic basin acting as a preferential recharge area of the aquifer, plays an important role, both for the snow cover and also for the infiltration and recharge of springs. The identification of recharge areas has been validated by the stable isotope approach with the assessment of computed isotope recharge elevation based on the values and oscillations of the delta O-18 isotope recorded at the springs. The main findings confirm the high infiltration rate of Campo Imperatore plain and its direct influence on snow contribution to aquifer recharge. The extension of snow coverage out of this plain has a minor influence to recharge, highlighting that the main drivers for infiltration rate are fractured networks and karstic forms more than snow coverage on carbonate outcrops

    The KINDRA project – towards Open Science in Hydrogeology for higher impact

    Get PDF
    Groundwater knowledge and research in the European Union is often scattered and non-standardised. Therefore, KINDRA is conducting an EU-wide assessment of existing groundwater-related practical and scientific knowledge based on a new Hydrogeological Research Classification System (HRC-SYS). The classification is supported by a web service, the European Inventory of Groundwater Research (EIGR), which acts not only as a knowledge repository but also as a tool to help identify relevant research topics, existing research trends and critical research challenges. These results will be useful for producing synergies, implementing policies and optimising water management in Europe. This article presents the work of the project during the first two years in relation to a common classification system and an activity for data collection and training delivered by the EFG’s National Associations in 20 European countries

    Ring sequence decomposition of an accretion disk: the viscoresistive approach

    Full text link
    We analyze a two dimensional viscoresistive magnetohydrodynamical (MHD) model for a thin accretion disk which reconciles the crystalline structure outlined in [Coppi(2005), Coppi and Rousseau(2006)] with real microscopic and macroscopic features of astrophysical accreting systems. In particular, we consider small dissipative effects (viscosity and resistivity, characterized by a magnetic Prandtl number of order unity), poloidal matter fluxes and a toroidal component of the magnetic field. These new ingredients allow us to set up the full equilibrium profile including the azimuthal component of the momentum conservation equation and the electron force balance relation. These two additional equations, which were identically satisfied in the original model, permit us to deal with non-zero radial and vertical matter fluxes, and the solution we construct for the global equilibrium system provides a full description of the radial and vertical dependence within the plasma disk. The main issue of our analysis is outlining a modulation of the matter distribution in the disk which corresponds to the formation of a ring-like sequence, here associated with a corresponding radial oscillation of the matter flux.Comment: 6 pages, 2 figure

    Groundwater of Rome

    Get PDF
    This paper describes the contents of the new Hydrogeological Map of the City of Rome (1:50,000 scale). The map extends to the entire municipality (1285 km2) and is based on both the most recent scientific studies on the groundwater field and new survey activities carried out in order to fill the data gaps in several areas of the examined territory. The map is the result of a combination of different urban groundwater expertise and Geographic Information System (GIS)-based mapping performed using the most recent available data and has been produced with the intention of furnishing the City of Rome with the most recent and updated information regarding groundwater

    Il Test di Orientamento Motivazionale (TOM) come strumento per la misurazione della motivazione al lavoro

    No full text

    Assessing the impact of climate change on energy retrofit of alpine historic buildings: Consequences for the hygrothermal performance

    Get PDF
    Climate change will affect future hygrothermal performance of buildings. This could lead to higher risks regarding energy optimization, thermal comfort and historic building conservation depending on the local climate, building construction and retrofit solutions adopted. This paper explores the risks brought by climate change on a typical residential historic building of South Tyrol. The results obtained show that, although the climate warming will reduce the future heating energy demand, an improvement of buildings' energy performance will still be necessary to increase sustainability and ensure their continued use. Natural ventilation would suffice to prevent overheating in the studied location, but a further analysis is needed for warmer alpine regions. Regarding the moisture-related risks for the historic construction, mould growth should be considered when retrofitting a wooden wall and frost damage should be carefully studied in the case of sandstone walls
    • …
    corecore