10,375 research outputs found
Mean Li-Yorke chaos in Banach spaces
We investigate the notion of mean Li-Yorke chaos for operators on Banach
spaces. We show that it differs from the notion of distributional chaos of type
2, contrary to what happens in the context of topological dynamics on compact
metric spaces. We prove that an operator is mean Li-Yorke chaotic if and only
if it has an absolutely mean irregular vector. As a consequence, absolutely
Ces\`aro bounded operators are never mean Li-Yorke chaotic. Dense mean Li-Yorke
chaos is shown to be equivalent to the existence of a dense (or residual) set
of absolutely mean irregular vectors. As a consequence, every mean Li-Yorke
chaotic operator is densely mean Li-Yorke chaotic on some infinite-dimensional
closed invariant subspace. A (Dense) Mean Li-Yorke Chaos Criterion and a
sufficient condition for the existence of a dense absolutely mean irregular
manifold are also obtained. Moreover, we construct an example of an invertible
hypercyclic operator such that every nonzero vector is absolutely mean
irregular for both and . Several other examples are also presented.
Finally, mean Li-Yorke chaos is also investigated for -semigroups of
operators on Banach spaces.Comment: 26 page
Possible duality violations in tau decay and their impact on the determination of alpha_s
We discuss the issue of duality violations in hadronic tau decay. After
introducing a physically motivated ansatz for duality violations, we estimate
their possible size by fitting this ansatz to the tau experimental data
provided by the ALEPH collaboration. Our conclusion is that these data do not
exclude significant duality violations in tau decay. This may imply an
additional systematic error in the value of alpha_s(m_tau), extracted from tau
decay, as large as \delta alpha_s(m_tau) \sim 0.003-0.010 .Comment: 20 pages, 4 figures. Minor fixes in the Appendi
Mitochondria-encoded genes contribute to evolution of heat and cold tolerance in yeast
Genetic analysis of phenotypic differences between species is typically limited to interfertile species. Here, we conducted a genome-wide noncomplementation screen to identify genes that contribute to a major difference in thermal growth profile between two reproductively isolated yeast species, Saccharomyces cerevisiae and Saccharomyces uvarum. The screen identified only a single nuclear-encoded gene with a moderate effect on heat tolerance, but, in contrast, revealed a large effect of mitochondrial DNA (mitotype) on both heat and cold tolerance. Recombinant mitotypes indicate that multiple genes contribute to thermal divergence, and we show that protein divergence in COX1 affects both heat and cold tolerance. Our results point to the yeast mitochondrial genome as an evolutionary hotspot for thermal divergence.This work was supported by the NIH (grant GM080669) to J.C.F. Additional support to C.T.H. was provided by the USDA National Institute of Food and Agriculture (Hatch project 1003258), the National Science Foundation (DEB-1253634), and the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-SC0018409 and DE-FC02-07ER64494 to T. J. Donohue). C.T.H. is a Pew Scholar in the Biomedical Sciences and a Vilas Faculty Early Career Investigator, supported by the Pew Charitable Trusts and the Vilas Trust Estate, respectively. D.P. is a Marie Sklodowska-Curie fellow of the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 747775).Peer reviewe
Long-distance dimension-eight operators in B_K
Besides their appearance at short distances \gtrsim 1/M_W, local
dimension-eight operators also contribute to kaon matrix elements at long
distances of order \gtrsim 1/mu_ope, where mu_ope is the scale controlling the
Operator Product Expansion in pure QCD, without weak interactions. This comes
about in the matching condition between the effective quark Lagrangian and the
Chiral Lagrangian of mesons. Working in dimensional regularization and in a
framework where these effects can be systematically studied, we calculate the
correction from these long-distance dimension-eight operators to the
renormalization group invariant B_K factor of K^0-K^0bar mixing, to
next-to-leading order in the 1/Nc expansion and in the chiral limit. The
correction is controlled by the matrix element <0|\bar s_L \tilde{G}_{mu
nu}gamma^mu d_L|K^0>, is small, and lowers B_K.Comment: 14 pages, LaTeX. Explanatory comments added to match version in
journa
Mitochondrial DNA and temperature tolerance in lager yeasts
A growing body of research suggests that the mitochondrial genome (mtDNA) is important for temperature adaptation. In the yeast genus Saccharomyces, species have diverged in temperature tolerance, driving their use in high- or low-temperature fermentations. Here, we experimentally test the role of mtDNA in temperature tolerance in synthetic and industrial hybrids (Saccharomyces cerevisiae × Saccharomyces eubayanus or Saccharomyces pastorianus), which cold-brew lager beer. We find that the relative temperature tolerances of hybrids correspond to the parent donating mtDNA, allowing us to modulate lager strain temperature preferences. The strong influence of mitotype on the temperature tolerance of otherwise identical hybrid strains provides support for the mitochondrial climactic adaptation hypothesis in yeasts and demonstrates how mitotype has influenced the world’s most commonly fermented beverage.This work was supported by the USDA National Institute of Food and Agriculture (Hatch project no. 1003258), the NSF (grant no. DEB-1253634), and in part by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science; nos. DE-SC0018409 and DE-FC02-07ER64494). E.P.B. was supported by a Louis and Elsa Thomsen Wisconsin Distinguished Graduate Fellowship. C.T.H. is a Pew Scholar in the Biomedical Sciences and a Vilas Faculty Early Career Investigator, supported by the Pew Charitable Trusts and the Vilas Trust Estate. D.P. is a Marie Sklodowska-Curie fellow of the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 747775). J.C.F. was supported by the NIH (no. GM080669)Peer Reviewe
- …
