75 research outputs found
Self-assembly of peptide-based nanostructures: Synthesis and biological activity
Peptide-based nanostructures have received much attention in the field of drug targeting. In fact, peptides have many advantages such as simplicity of the structure, biocompatibility, and chemical diversity. Moreover, some peptides, which are called cell-penetrating peptides, can cross cellular membranes and carry small molecules, small interfering RNA, or viruses inside live cells. These molecules are often covalently or noncovalently linked to cargoes, thus forming amphiphilic conjugates that can self-assemble. Supramolecular nanostructures formed from peptides are used in nanomedicine as a carrier to protect a drug and to target cancer cells. This review explores aliphatic-chain–conjugated peptides and drug-conjugated peptides that can self-assemble. Special emphasis is placed on the synthesis procedure, nanostructure formation, and biological activity
Novel metal-based anticancer drugs: a new challenge in drug delivery
Since the serependitous discovery of the cisplatin antiproliferative activity, many efforts have focused on the design of potent metal-based drugs for oncology therapies. A large number of these complexes have been evaluated in vitro and in vivo and some have reached clinical trials. However, while metallodrug chemistry has developed to an advanced level, these emerging therapeutics have encountered new hurdles including poor water solubility and pharmacological deficiencies. Today, solutions to overcome these issues do not lie in synthesizing new anticancer drugs but in finding suitable drug delivery strategies. Over the past decades, various delivery systems have been developed including prodrug, ligand design and nanocarriers aimed at enhancing the performance profile of these novel metallodrugs
Convection-enhanced delivery of nanocarriers for the treatment of brain tumors
Primary brain tumors have a significant infiltrative capacity as their reappearance after resection usually occurs within 2cm of the tumor margin. Local delivery method such as Convection-Enhanced Delivery (CED) has been introduced to avoid this recurrence by delivering active molecules via positive-pressure methods. For an efficient infusion, the distribution volume of the drug has to be optimized while avoiding backflow, since this is responsible for side effects and a reduction of therapeutic efficacy. The encapsulation of the drug infused in nanosized structures can be considered, which would lead to a reduction of both toxicity of the treatment and infusion time during CED. In the present review, we will firstly discuss the technical approach of CED with regard to catheter design and brain characteristics; secondly, we will describe the \u27ideal\u27 nanocarrier in terms of size, surface properties, and interaction with the extracellular matrix for optimal diffusion in the brain parenchyma. We also discuss preclinical and clinical applications of this new method
Nucleic-Acid Delivery Using Lipid Nanocapsules
Lipid nanocapsules (LNCs) were designed more than 15 years ago to deliver lipophilic drugs to cells with non toxic excipients by mimicking lipoproteins. During the last 5 years these promising nanocarriers were re-designed to deliver nucleic acids to cancer cells. This short review sums up the features of LNCs and describes how DNAs or RNAs can be associated or encapsulated in these lipid carriers. The results of transfection effects on cells in vitro or in vivo are also presented. These new therapeutic strategies have been mainly proposed for glioma and melanoma treatment because these cancers are characterized by multiple acquired resistances, which can be reversed by DNA transfection or siRNA interference as it is discussed in this paper. In conclusion, LNCs are very good candidates to deliver nucleic acids to cells in the course of anti-cancer therapies
Characterization of the tumor vasculature in mouse melanoma models. Roles of siRNA-loaded lipid nanocapsules
A significant increase of reported cutaneous melanoma cases have been observed within the past four decades. Despite numerous therapeutic strategies available and ongoing works on novel therapeutics, the vital prognosis for the diagnosed patients are still poor due to low response rate of the tumors to these treatments. For this reason, the application of interfering RNA (RNAi) as a therapeutic agent allowing reestablishment of physiological process of cellular death seems to be a promising altern ative strategy. The use of nanoparticles enables to i) improve the pharmacokinetic of RNAi, ii) potentialize its efficiency and iii) avoid side effects is essential to improve tumor targeting. Therefore, the structure and density of vascularization in a tumor-site is a crucial factor for determining efficacy of nanovectors. This allows the passive targeting which is due to enhanced permeability and retention (EPR) effect. [...
- …