1,394 research outputs found

    Bounded automorphisms and quasi-isometries of finitely generated groups

    Full text link
    Let G be any finitely generated infinite group. Denote by K(G) the FC-centre of G, i.e., the subgroup of all elements of G whose centralizers are of finite index in G. Let QI(G) denote the group of quasi-isometries of G with respect to word metric. We observe that the natural homomorphism from the group of automorphisms of G to QI(G) is a monomorphism only if K(G) equals the centre Z(G) of G. The converse holds if K(G)=Z(G) is torsion free. We apply this criterion to many interesting classes of groups.Comment: This is the corrected version. Published in J. Group Theory, 8 (2005), 515--52

    Universal properties of many-body delocalization transitions

    Full text link
    We study the dynamical melting of "hot" one-dimensional many-body localized systems. As disorder is weakened below a critical value these non-thermal quantum glasses melt via a continuous dynamical phase transition into classical thermal liquids. By accounting for collective resonant tunneling processes, we derive and numerically solve an effective model for such quantum-to-classical transitions and compute their universal critical properties. Notably, the classical thermal liquid exhibits a broad regime of anomalously slow sub-diffusive equilibration dynamics and energy transport. The subdiffusive regime is characterized by a continuously evolving dynamical critical exponent that diverges with a universal power at the transition. Our approach elucidates the universal long-distance, low-energy scaling structure of many-body delocalization transitions in one dimension, in a way that is transparently connected to the underlying microscopic physics.Comment: 12 pages, 6 figures; major changes from v1, including a modified approach and new emphasis on conventional MBL systems rather than their critical variant

    Localization-protected order in spin chains with non-Abelian discrete symmetries

    Full text link
    We study the non-equilibrium phase structure of the three-state random quantum Potts model in one dimension. This spin chain is characterized by a non-Abelian D3D_3 symmetry recently argued to be incompatible with the existence of a symmetry-preserving many-body localized (MBL) phase. Using exact diagonalization and a finite-size scaling analysis, we find that the model supports two distinct broken-symmetry MBL phases at strong disorder that either break the Z3{\mathbb{Z}_3} clock symmetry or a Z2{\mathbb{Z}_2} chiral symmetry. In a dual formulation, our results indicate the existence of a stable finite-temperature topological phase with MBL-protected parafermionic end zero modes. While we find a thermal symmetry-preserving regime for weak disorder, scaling analysis at strong disorder points to an infinite-randomness critical point between two distinct broken-symmetry MBL phases.Comment: 5 pages, 3 figures main text; 6 pages, 3 figures supplemental material; Version 2 includes a corrected the form of the chiral order parameter, and corresponding data, as well as larger system size numerics, with no change to the phase structur

    Particle-hole symmetry, many-body localization, and topological edge modes

    Full text link
    We study the excited states of interacting fermions in one dimension with particle-hole symmetric disorder (equivalently, random-bond XXZ chains) using a combination of renormalization group methods and exact diagonalization. Absent interactions, the entire many-body spectrum exhibits infinite-randomness quantum critical behavior with highly degenerate excited states. We show that though interactions are an irrelevant perturbation in the ground state, they drastically affect the structure of excited states: even arbitrarily weak interactions split the degeneracies in favor of thermalization (weak disorder) or spontaneously broken particle-hole symmetry, driving the system into a many-body localized spin glass phase (strong disorder). In both cases, the quantum critical properties of the non-interacting model are destroyed, either by thermal decoherence or spontaneous symmetry breaking. This system then has the interesting and counterintuitive property that edges of the many-body spectrum are less localized than the center of the spectrum. We argue that our results rule out the existence of certain excited state symmetry-protected topological orders.Comment: 9 pages. 7 figure

    Accidental SUSY: Enhanced Bulk Supersymmetry from Brane Back-reaction

    Get PDF
    We compute how bulk loops renormalize both bulk and brane effective interactions for codimension-two branes in 6D gauged chiral supergravity, as functions of the brane tension and brane-localized flux. We do so by explicitly integrating out hyper- and gauge-multiplets in 6D gauged chiral supergravity compactified to 4D on a flux-stabilized 2D rugby-ball geometry, specializing the results of a companion paper, arXiv:1210.3753, to the supersymmetric case. While the brane back-reaction generically breaks supersymmetry, we show that the bulk supersymmetry can be preserved if the amount of brane-localized flux is related in a specific BPS-like way to the brane tension, and verify that the loop corrections to the brane curvature vanish in this special case. In these systems it is the brane-bulk couplings that fix the size of the extra dimensions, and we show that in some circumstances the bulk geometry dynamically adjusts to ensure the supersymmetric BPS-like condition is automatically satisfied. We investigate the robustness of this residual supersymmetry to loops of non-supersymmetric matter on the branes, and show that supersymmetry-breaking effects can enter only through effective brane-bulk interactions involving at least two derivatives. We comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.Comment: 49 pages + appendices. This is the final version to appear in JHE
    • …
    corecore