97 research outputs found

    Gating of high-mobility InAs metamorphic heterostructures

    Full text link
    We investigate the performance of gate-defined devices fabricated on high mobility InAs metamorphic heterostructures. We find that heterostructures capped with In0.75_{0.75}Ga0.25_{0.25}As often show signs of parallel conduction due to proximity of their surface Fermi level to the conduction band minimum. Here, we introduce a technique that can be used to estimate the density of this surface charge that involves cool-downs from room temperature under gate bias. We have been able to remove the parallel conduction under high positive bias, but achieving full depletion has proven difficult. We find that by using In0.75_{0.75}Al0.25_{0.25}As as the barrier without an In0.75_{0.75}Ga0.25_{0.25}As capping, a drastic reduction in parallel conduction can be achieved. Our studies show that this does not change the transport properties of the quantum well significantly. We achieved full depletion in InAlAs capped heterostructures with non-hysteretic gating response suitable for fabrication of gate-defined mesoscopic devices

    Superconducting, Insulating, and Anomalous Metallic Regimes in a Gated Two-Dimensional Semiconductor-Superconductor Array

    Full text link
    The superconductor-insulator transition in two dimensions has been widely investigated as a paradigmatic quantum phase transition. The topic remains controversial, however, because many experiments exhibit a metallic regime with saturating low-temperature resistance, at odds with conventional theory. Here, we explore this transition in a novel, highly controllable system, a semiconductor heterostructure with epitaxial Al, patterned to form a regular array of superconducting islands connected by a gateable quantum well. Spanning nine orders of magnitude in resistance, the system exhibits regimes of superconducting, metallic, and insulating behavior, along with signatures of flux commensurability and vortex penetration. An in-plane magnetic field eliminates the metallic regime, restoring the direct superconductor-insulator transition, and improves scaling, while strongly altering the scaling exponent

    Hall effect in laser ablated Co_2(Mn,Fe)Si thin films

    Full text link
    Pulsed laser deposition was employed to grow thin films of the Heusler compounds Co_2MnSi and Co_2FeSi. Epitaxial growth was realized both directly on MgO (100) and on a Cr or Fe buffer layer. Structural analysis by x-ray and electron diffraction shows for both materials the ordered L2_1 structure. Bulk magnetization was determined with a SQUID magnetometer. The values agree with the Slater-Pauling rule for half-metallic Heusler compounds. On the films grown directly on the substrate measurements of the Hall effect have been performed. The normal Hall effect is nearly temperature independent and points towards a compensated Fermi surface. The anomalous contribution is found to be dominated by skew scattering. A remarkable sign change of both normal and anomalous Hall coefficients is observed on changing the valence electron count from 29 (Mn) to 30 (Fe).Comment: 9 pages, 6 figures submitted to J Phys

    Optical and electrical spin injection and spin transport in hybrid Fe/GaAs devices

    Full text link
    We discuss methods for imaging the nonequilibrium spin polarization of electrons in Fe/GaAs spin transport devices. Both optically- and electrically-injected spin distributions are studied by scanning magneto-optical Kerr rotation microscopy. Related methods are used to demonstrate electrical spin detection of optically-injected spin polarized currents. Dynamical properties of spin transport are inferred from studies based on the Hanle effect, and the influence of strain on spin transport data in these devices is discussed.Comment: 5 pages, 6 figs. ICPS-28 proceedings (July'06, Vienna) for J. Appl. Phy
    • …
    corecore