94,239 research outputs found

    A Novel Nanocomposite with Photo-Polymerization for Wafer Level Application

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.A novel nanocomposite photo-curable material which can act both as a photoresist and a stress redistribution layer applied on the wafer level was synthesized and studied. In the experiments, 20-nm silica fillers were modified by a silane coupling agent through a hydrolysis and condensation reaction and then incorporated into the epoxy matrix. A photo-sensitive initiator was added into the formulation which can release cations after ultraviolet exposure and initiate the epoxy crosslinking reaction. The photo-crosslinking reaction of the epoxy made it a negative tone photoresist. The curing reaction of the nanocomposites was monitored by a differential scanning calorimeter with the photo-calorimetric accessory. The thermal mechanical properties of photo-cured nanocomposites thin film were also measured. It was found that the moduli change of the nanocomposites as the filler loading increasing did not follow the Mori–Tanaka model, which indicated that the nanocomposite was not a simple two-phase structure as the composite with micron size filler. The addition of nano-sized silica fillers reduced the thermal expansion and improved the stiffness of the epoxy, with only a minimal effect on the optical transparency of the epoxy, which facilitated the complete photo reaction in the epoxy

    Formation and Stability of Cellular Carbon Foam Structures:An {\em Ab Initio} Study

    Full text link
    We use ab initio density functional calculations to study the formation and structural as well as thermal stability of cellular foam-like carbon nanostructures. These systems with a mixed sp2/sp3sp^2/sp^3 bonding character may be viewed as bundles of carbon nanotubes fused to a rigid contiguous 3D honeycomb structure that can be compressed more easily by reducing the symmetry of the honeycombs. The foam may accommodate the same type of defects as graphene, and its surface may be be stabilized by terminating caps. We postulate that the foam may form under non-equilibrium conditions near grain boundaries of a carbon-saturated metal surface

    Formation of Compressed Flat Electron Beams with High Transverse-Emittance Ratios

    Full text link
    Flat beams -- beams with asymmetric transverse emittances -- have important applications in novel light-source concepts, advanced-acceleration schemes and could possibly alleviate the need for damping rings in lepton colliders. Over the last decade, a flat-beam-generation technique based on the conversion of an angular-momentum-dominated beam was proposed and experimentally tested. In this paper we explore the production of compressed flat beams. We especially investigate and optimize the flat-beam transformation for beams with substantial fractional energy spread. We use as a simulation example the photoinjector of the Fermilab's Advanced Superconducting Test Accelerator (ASTA). The optimizations of the flat beam generation and compression at ASTA were done via start-to-end numerical simulations for bunch charges of 3.2 nC, 1.0 nC and 20 pC at ~37 MeV. The optimized emittances of flat beams with different bunch charges were found to be 0.25 {\mu}m (emittance ratio is ~400), 0.13 {\mu}m, 15 nm before compression, and 0.41 {\mu}m, 0.20 {\mu}m, 16 nm after full compression, respectively with peak currents as high as 5.5 kA for a 3.2-nC flat beam. These parameters are consistent with requirements needed to excite wakefields in asymmetric dielectric-lined waveguides or produce significant photon flux using small-gap micro-undulators.Comment: 17

    Effects of Minijets on Hadronic Spectra and Azimuthal Harmonics in Au-Au Collisions at 200 GeV

    Full text link
    The production of hadrons in heavy-ion collisions at RHIC in the low transverse-momentum (pTp_T) region is investigated in the recombination model with emphasis on the effects of minijets on the azimuthal anisotropy. Since the study is mainly on the hadronization of partons at late time, the fluid picture is not used to trace the evolution of the system. The inclusive distributions at low pTp_T are determined as the recombination products of thermal partons. The pTp_T dependencies of both pion and proton have a common exponential factor apart from other dissimilar kinematic and resonance factors, because they are inherited from the same pool of thermal partons. Instead of the usual description based on hydrodynamics, the azimuthal anisotropy of the produced hadrons is explained as the consequence of the effects of minijets, either indirectly through the recombination of enhanced thermal partons in the vicinity of the trajectories of the semihard partons, or directly through thermal-shower recombination. Although our investigation is focussed on the single-particle distribution at midrapidity, we give reasons why a component in that distribution can be identified with the ridge, which together with the second harmonic v2v_2 is due to the semihard partons created near the medium surface that lead to calculable anisotropy in ϕ\phi. It is shown that the higher azimuthal harmonics, vnv_n, can also be well reproduced without reference to flow. The pTp_T and centrality dependencies of the higher harmonics are prescribed by the interplay between TT and TS recombination components. The implication of the success of this drastic departure from the conventional approach is discussed.Comment: 28 pages and 8 figures, more discussions and references adde

    Time-dependent Fr\"ohlich transformation approach for two-atom entanglement generated by successive passage through a cavity

    Full text link
    Time-dependent Fr\"ohlich transformations can be used to derive an effective Hamiltonian for a class of quantum systems with time-dependent perturbations. We use such a transformation for a system with time-dependent atom-photon coupling induced by the classical motion of two atoms in an inhomogeneous electromagnetic field. We calculate the entanglement between the two atoms resulting from their motion through a cavity as a function of their initial position difference and velocity.Comment: 7 pages, 3 figure

    Continuous quantum phase transition in a Kondo lattice model

    Full text link
    We study the magnetic quantum phase transition in an anisotropic Kondo lattice model. The dynamical competition between the RKKY and Kondo interactions is treated using an extended dynamic mean field theory (EDMFT) appropriate for both the antiferromagnetic and paramagnetic phases. A quantum Monte Carlo approach is used, which is able to reach very low temperatures, of the order of 1% of the bare Kondo scale. We find that the finite-temperature magnetic transition, which occurs for sufficiently large RKKY interactions, is first order. The extrapolated zero-temperature magnetic transition, on the other hand, is continuous and locally critical.Comment: 4 pages, 4 figures; updated, to appear in PR

    Resonant activation: a strategy against bacterial persistence

    Full text link
    A bacterial colony may develop a small number of cells genetically identical to, but phenotypically different from other normally growing bacteria. These so-called persister cells keep themselves in a dormant state and thus are insensitive to antibiotic treatment, resulting in serious problems of drug resistance. In this paper, we proposed a novel strategy to "kill" persister cells by triggering them to switch, in a fast and synchronized way, into normally growing cells that are susceptible to antibiotics. The strategy is based on resonant activation (RA), a well-studied phenomenon in physics where the internal noise of a system can constructively facilitate fast and synchronized barrier crossings. Through stochastic Gilliespie simulation with a generic toggle switch model, we demonstrated that RA exists in the phenotypic switching of a single bacterium. Further, by coupling single cell level and population level simulations, we showed that with RA, one can greatly reduce the time and total amount of antibiotics needed to sterilize a bacterial population. We suggest that resonant activation is a general phenomenon in phenotypic transition, and can find other applications such as cancer therapy.Comment: 21 pages, 12 figures, submitte
    corecore