11,126 research outputs found

    Universal Non-perturbative Functions for SIDIS and Drell-Yan Processes

    Full text link
    We update the well-known BLNY fit to the low transverse momentum Drell-Yan lepton pair productions in hadronic collisions, by considering the constraints from the semi-inclusive hadron production in deep inelastic scattering (SIDIS) from HERMES and COMPASS experiments. We follow the Collins-Soper-Sterman (CSS) formalism with the b_*-prescription. A universal non-perturbative form factor associated with the transverse momentum dependent quark distributions is found in the analysis with a new functional form different from that of BLNY. This releases the tension between the BLNY fit to the Drell-Yan data with the SIDIS data from HERMES/COMPASS in the CSS resummation formalism.Comment: 19 pages, 11 figures; updated the fit with running effects of \alpha_{s}, \alpha_{em}, N_f; conclusion remains; more discussions on the result

    Resummation of High Order Corrections in Higgs Boson Plus Jet Production at the LHC

    Full text link
    We study the effect of multiple parton radiation to Higgs boson plus jet production at the LHC, by applying the transverse momentum dependent (TMD) factorization formalism to resum large logarithmic contributions to all orders in the expansion of the strong interaction coupling. We show that the appropriate resummation scale should be the jet transverse momentum, rather than the partonic center of mass energy which has been normally used in the TMD resummation formalism. Furthermore, the transverse momentum distribution of the Higgs boson, particularly near the lower cut-off applied on the jet transverse momentum, can only be reliably predicted by the resummation calculation which is free of the so-called Sudakov-shoulder singularity problem, present in fixed-order calculations.Comment: 7 pages, 4 figure

    Failure of Perturbation Theory Near Horizons: the Rindler Example

    Full text link
    Persistent puzzles to do with information loss for black holes have stimulated critical reassessment of the domain of validity of semiclassical EFT reasoning in curved spacetimes, particularly in the presence of horizons. We argue here that perturbative predictions about evolution for very long times near a horizon are subject to problems of secular growth - i.e. powers of small couplings come systematically together with growing functions of time. Such growth signals a breakdown of naive perturbative calculations of late-time behaviour, regardless of how small ambient curvatures might be. Similar issues of secular growth also arise in cosmology, and we build evidence for the case that such effects should be generic for gravitational fields. In particular, inferences using free fields coupled only to background metrics can be misleading at very late times due to the implicit assumption they make of perturbation theory when neglecting other interactions. Using the Rindler horizon as an example we show how this secular growth parallels similar phenomena for thermal systems, and how it can be resummed to allow late-time inferences to be drawn more robustly. Some comments are made about the appearance of an IR/UV interplay in this calculation, as well as on the possible relevance of our calculations to predictions near black-hole horizons.Comment: LaTeX, 17 pages plus appendix; added references and subsection on back-reactio

    Chandra and XMM-Newton Observations of the Double Cluster Abell 1758

    Full text link
    Abell 1758 was classified as a single rich cluster of galaxies by Abell, but a ROSAT observation showed that this system consists of two distinct clusters (A1758N and A1758S) separated by approximately 8\arcmin (a projected separation of 2 Mpc in the rest frame of the clusters). Only a few galaxy redshifts have been published for these two clusters, but the redshift of the Fe lines in the Chandra and XMM-Newton spectra shows that the recessional velocities of A1758N and A1758S are within 2,100 km s−1^{-1}. Thus, these two clusters most likely form a gravitationally bound system, but our imaging and spectroscopic analyses of the X-ray data do not reveal any sign of interaction between the two clusters. The Chandra and XMM-Newton observations show that A1758N and A1758S are both undergoing major mergers. A1758N is in the late stages of a large impact parameter merger between two 7 keV clusters. The two remnant cores have a projected separation of 800 kpc. Based on the measured pressure jumps preceding the two cores, they are receding from one another at less than 1,600 km s−1^{-1}. The two cores are surrounded by hotter gas (kT=9\mathrm{kT}=9--12 keV) that was probably shock heated during the early stages of the merger. The gas entropy in the two remnant cores is comparable with the central entropy observed in dynamically relaxed clusters, indicating that the merger-induced shocks stalled as they tried to penetrate the high pressure cores of the two merging systems.Each core also has a wake of low entropy gas indicating that this gas was ram pressure stripped without being strongly shocked (abridged). (A copy of the paper with higher resolution images is available at http://asc.harvard.edu/~lpd/a1758.ps).Comment: paper plus 13 figure
    • …
    corecore