15,964 research outputs found

    Magnon Heat Conductivity and Mean Free Paths in Two-Leg Spin Ladders: A Model-Independent Determination

    Full text link
    The magnon thermal conductivity κmag\kappa_{\mathrm{mag}} of the spin ladders in Sr14Cu24−xZnxO41\rm Sr_{14}Cu_{24-x}Zn_xO_{41} has been investigated at low doping levels x=0x=0, 0.125, 0.25, 0.5 and 0.75. The Zn-impurities generate nonmagnetic defects which define an upper limit for lmagl_{\mathrm{mag}} and therefore allow a clear-cut relation between lmagl_{\mathrm{mag}} and κmag\kappa_{\mathrm{mag}} to be established independently of any model. Over a large temperature range we observe a progressive suppression of κmag\kappa_{\mathrm{mag}} with increasing Zn-content and find in particular that with respect to pure Sr14Cu24O41\rm Sr_{14}Cu_{24}O_{41} κmag\kappa_{\mathrm{mag}} is strongly suppressed even in the case of tiny impurity densities where lmag≲374l_{\mathrm{mag}}\lesssim 374~{\AA}. This shows unambiguously that large lmag≈3000l_{\mathrm{mag}}\approx 3000~{\AA} which have been reported for Sr14Cu24O41\rm Sr_{14}Cu_{24}O_{41} and La5Ca9Cu24O41\rm La_{5}Ca_9Cu_{24}O_{41} on basis of a kinetic model are in the correct order of magnitude

    Chemical differentiation of a convecting planetary interior: Consequences for a one-plate planet such as Venus

    Get PDF
    Chemically depleted mantle forming a buoyant, refractory layer at the top of the mantle can have important implications for the evolution of the interior and surface. On Venus, the large apparent depths of compensation for surface topographic features might be explained if surface topography were supported by variations in the thickness of a 100-200 km thick chemically buoyant mantle layer or by partial melting in the mantle at the base of such a layer. Long volcanic flows seen on the surface may be explained by deep melting that generates low-viscosity MgO-rich magmas. The presence of a shallow refractory mantle layer may also explain the lack of volcanism associated with rifting. As the depleted layer thickens and cools, it becomes denser than the convecting interior and the portion of it that is hot enough to flow can mix with the convecting mantle. Time dependence of the thickness of a depleted layer may create episodic resurfacing events as needed to explain the observed distribution of impact craters on the venusian surface. We consider a planetary structure consisting of a crust, depleted mantle layer, and a thermally and chemically well-mixed convecting mantle. The thermal evolution of the convecting spherical planetary interior is calculated using energy conservation: the time rate of change of thermal energy in the interior is equated to the difference in the rate of radioactive heat production and the rate of heat transfer across the thermal boundary layer. Heat transfer across the thermal boundary layer is parameterized using a standard Nusselt number-Rayleigh number relationship. The radioactive heat production decreases with time corresponding to decay times for the U, Th, and K. The planetary interior cools by the advection of hot mantle at temperature T interior into the thermal boundary layer where it cools conductively. The crust and depleted mantle layers do not convect in our model so that a linear conductive equilibrium temperature distribution is assumed. The rate of melt production is calculated as the product of the volume flux of mantle into the thermal boundary layer and the degree of melting that this mantle undergoes. The volume flux of mantle into the thermal boundary layer is simply the heat flux divided by amount of heat lost in cooling mantle to the average temperature in the thermal boundary layer. The degree of melting is calculated as the temperature difference above the solidus, divided by the latent heat of melting. A maximum degree of melting is prescribed corresponding to the maximum amount of basaltic melt that the mantle can initially generate. As the crust thickens, the pressure at the base of the crust becomes high enough and the temperature remains low enough for basalt to transform to dense eclogite

    Regge Behaviour from an Environmentally Friendly Renormalization Group

    Get PDF
    The asymptotic behaviour of cubic field theories is investigated in the Regge limit using the techniques of environmentally friendly renormalization, environmentally friendly in the present context meaning asymmetric in its momentum dependence. In particular we consider the crossover between large and small energies at fixed momentum transfer for a model scalar theory of the type phi^2 psi. The asymptotic forms of the crossover scaling functions are exhibited for all two particle scattering processes in this channel to one loop in a renormalization group improved perturbation theory.Comment: 9 pages text, one figure, LaTeX, uses psfig.sty. Revised version submitted to Phys. Lett. B., besides minor changes a figure to illustrate the conventions and a discussion of the full crossover function have been adde

    Chemical differentiation on one-plate planets: Predictions and geologic observations for Venus

    Get PDF
    Recent studies have examined the partial melting of planetary interiors on one-plate planets and the implications for the formation and evolution of basaltic crust and the complementary residual mantle layer. In contrast to the Earth, where the crust and residual layer move laterally and are returned to the interior following subduction, one-plate planets such as Venus are characterized by vertical accretion of the crust and residual layer. The residual mantle layer is depleted and compositionally buoyant, being less dense than undepleted mantle due to its reduced Fe/Mg and dense Al-bearing minerals; its melting temperature is also increased. As the crust and depleted mantle layer grow vertically during the thermal evolution of the planet, several stages develop. As a step in the investigation and testing of these theoretical treatments of crustal development on Venus, we investigate the predictions deriving from two of these stages (a stable thick crust and depleted layer, and a thick unstable depleted layer) and compare these to geologic and geophysical observations, speculating on how these might be interpreted in the context of the vertical crustal accretion models. In each case, we conclude with an outline of further tests and observations of these models

    The ilmenite liquidus and depths of segregation for high-Ti picrite glasses

    Get PDF
    Lunar picrite glasses represent primitive and perhaps near primary liquids which have suffered only minor degrees of crystallization or near crustal modification. These glasses are multisaturated with olivine and orthopyroxene at pressures from 20-25 kb. I argue below that high TiO2 mare glasses were indeed equilibrated with orthopyroxene and were segregated from the lunar mantle at mean depths of 400-500 km. The glasses are typically modelled as products of relatively low degrees of melting of an hybridized source resulting from the overturn and mixing of the gravitationally unstable cumulate pile. But the models are neither unique nor, in some cases, correct

    DIAL with heterodyne detection including speckle noise: Aircraft/shuttle measurements of O3, H2O, and NH3 with pulsed tunable CO2lasers

    Get PDF
    A parametric analysis of DIAL sensitivity with heterodyne detection is presented and comparisons with direct detection are discussed. Examples are given for monitoring vertical distributions of O3, H2O, and NH3 using a ground-, aircraft-, or shuttle-based pulsed tunable CO2 laser DIAL system. Results indicate that maximum sensitivity at minimum laser energy per measurement requires multiple pulse operation with the energy per pulse selected so that the measured photon rate is approximately equal to the detector IF bandwidth. Measurement sensitivities can be maximized and interference effects minimized by fine adjustment of measurement frequencies using the tunability of high pressure lasers. The use of rare isotope lasers minimizes loss due to CO2 atmospheric absorption

    DIAL with heterodyne detection including speckle noise: Aircraft/shuttle measurements of O3, H2O, and NH3 with pulsed tunable CO2 lasers

    Get PDF
    Atmospheric trace constituent measurements with higher vertical resolution than attainable with passive radiometers are discussed. Infrared differential absorption lidar (DIAL), which depends on Mie scattering from aerosols, has special advantages for tropospheric and lower stratospheric applications and has great potential importance for measurements from shuttle and aircraft. Differential absorption lidar data reduction involves comparing large amplitude signals which have small differences. The accuracy of the trace constituent concentration inferred from DIAL measurements depends strongly on the errors in determining the amplitude of the signals. Thus, the commonly used SNR expression (signal divided by noise in the absence of signal) is not adequate to describe DIAL measurement accuracy and must be replaced by an expression which includes the random coherent (speckle) noise within the signal. A comprehensive DIAL computer algorithm is modified to include heterodyne detection and speckle noise. Examples for monitoring vertical distributions of O3, H2O, and NH3 using a ground-, aircraft-, or shuttle-based pulsed tunable CO2 laser DIAL system are given

    Using variograms to detect and attribute hydrological change

    Get PDF
    There have been many published studies aiming to identify temporal changes in river flow time series, most of which use monotonic trend tests such as the Mann–Kendall test. Although robust to both the distribution of the data and incomplete records, these tests have important limitations and provide no information as to whether a change in variability mirrors a change in magnitude. This study develops a new method for detecting periods of change in a river flow time series, using temporally shifting variograms (TSVs) based on applying variograms to moving windows in a time series and comparing these to the long-term average variogram, which characterises the temporal dependence structure in the river flow time series. Variogram properties in each moving window can also be related to potential meteorological drivers. The method is applied to 91 UK catchments which were chosen to have minimal anthropogenic influences and good quality data between 1980 and 2012 inclusive. Each of the four variogram parameters (range, sill and two measures of semi-variance) characterise different aspects of the river flow regime, and have a different relationship with the precipitation characteristics. Three variogram parameters (the sill and the two measures of semi-variance) are related to variability (either day-to-day or over the time series) and have the largest correlations with indicators describing the magnitude and variability of precipitation. The fourth (the range) is dependent on the relationship between the river flow on successive days and is most correlated with the length of wet and dry periods. Two prominent periods of change were identified: 1995–2001 and 2004–2012. The first period of change is attributed to an increase in the magnitude of rainfall whilst the second period is attributed to an increase in variability of the rainfall. The study demonstrates that variograms have considerable potential for application in the detection and attribution of temporal variability and change in hydrological systems
    • …
    corecore