8 research outputs found

    Vehicle Automation Field Test: Impact on Driver Behavior and Trust

    Full text link
    With the growing technological advances in autonomous driving, the transport industry and research community seek to determine the impact that autonomous vehicles (AV) will have on consumers, as well as identify the different factors that will influence their use. Most of the research performed so far relies on laboratory-controlled conditions using driving simulators, as they offer a safe environment for testing advanced driving assistance systems (ADAS). In this study we analyze the behavior of drivers that are placed in control of an automated vehicle in a real life driving environment. The vehicle is equipped with advanced autonomy, making driver control of the vehicle unnecessary in many scenarios, although a driver take over is possible and sometimes required. In doing so, we aim to determine the impact of such a system on the driver and their driving performance. To this end road users' behavior from naturalistic driving data is analyzed focusing on awareness and diagnosis of the road situation. Results showed that the road features determined the level of visual attention and trust in the automation. They also showed that the activities performed during the automation affected the reaction time to take over the control of the vehicle. © 2020 IEEE.This work was supported by the Austrian Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK) Endowed Professorship for Sustainable Transport Logistics 4.0

    Mobile Delivery Robots: Mixed Reality-Based Simulation Relying on ROS and Unity 3D

    Full text link
    In the context of Intelligent Transportation Systems and the delivery of goods, new technology approaches need to be developed in order to cope with certain challenges that last mile delivery entails, such as navigation in an urban environment. Autonomous delivery robots can help overcome these challenges. We propose a method for performing mixed reality (MR) simulation with ROS-based robots using Unity, which synchronizes the real and virtual environment, and simultaneously uses the sensor information of the real robots to locate themselves and project them into the virtual environment, so that they can use their virtual doppelganger to perceive the virtual world. Using this method, real and virtual robots can perceive each other and the environment in which the other party is located, thereby enabling the exchange of information between virtual and real objects. Through this approach a more realistic and reliable simulation can be obtained. Results of the demonstrated use-cases verified the feasibility and efficiency as well as the stability of implementing MR using Unity for Robot Operating System (ROS)-based robots. © 2020 IEEE.This work was supported by the Austrian Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK) Endowed Professorship for Sustainable Transport Logistics 4.0

    A game theory-based approach for modeling autonomous vehicle behavior in congested, urban lane-changing scenarios

    Full text link
    Autonomous vehicles are expected to display human-like behavior, at least to the extent that their decisions can be intuitively understood by other road users. If this is not the case, the coexistence of manual and autonomous vehicles in a mixed environment might affect road user interactions negatively and might jeopardize road safety. To this end, it is highly important to design algorithms that are capable of analyzing human decision-making processes and of reproducing them. In this context, lane-change maneuvers have been studied extensively. However, not all potential scenarios have been considered, since most works have focused on highway rather than urban scenarios. We contribute to the field of research by investigating a particular urban traffic scenario in which an autonomous vehicle needs to determine the level of cooperation of the vehicles in the adjacent lane in order to proceed with a lane change. To this end, we present a game theory-based decision-making model for lane changing in congested urban intersections. The model takes as input driving-related parameters related to vehicles in the intersection before they come to a complete stop. We validated the model by relying on the Co-AutoSim simulator. We compared the prediction model outcomes with actual participant decisions, i.e., whether they allowed the autonomous vehicle to drive in front of them. The results are promising, with the prediction accuracy being 100% in all of the cases in which the participants allowed the lane change and 83.3% in the other cases. The false predictions were due to delays in resuming driving after the traffic light turned green. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.This work was supported by the Austrian Ministry for Climate Action, Environment, Energy, Mobility, Innovation, and Technology (BMK) Endowed Professorship for Sustainable Transport Logistics 4.0., IAV France S.A.S.U., IAV GmbH, Austrian Post AG, and the UAS Technikum Wien. It was additionally supported by the Zero Emission Roll-Out?Cold Chain Distribution_877493

    Autonomous Driving: Framework for Pedestrian Intention Estimation in a Real World Scenario

    Full text link
    Rapid advancements in driver assistance technology will lead to the integration of fully autonomous vehicles on our roads that will interact with other road users. To address the problem that driverless vehicles make interaction through eye contact impossible, we describe a framework for estimating the crossing intentions of pedestrians in order to reduce the uncertainty that the lack of eye contact between road users creates. The framework was deployed in a real vehicle and tested with three experimental cases that showed a variety of communication messages to pedestrians in a shared space scenario. Results from the performed field tests showed the feasibility of the presented approach. © 2020 IEEE.This work was supported by the Austrian Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK) Endowed Professorship for Sustainable Transport Logistics 4.0 and the Spanish Ministry of Economy, Industry and Competitiveness under TRA201563708-R and TRA2016-78886-C3-1-R Projects

    Multicultural Text Entry: A Usability Study

    No full text
    corecore