614 research outputs found
Ecological Validity of Immersive Virtual Reality (IVR) Techniques for the Perception of Urban Sound Environments
Immersive Virtual Reality (IVR) is a simulated technology used to deliver multisensory information to people under different environmental conditions. When IVR is generally applied in urban planning and soundscape research, it reveals attractive possibilities for the assessment of urban sound environments with higher immersion for human participation. In virtual sound environments, various topics and measures are designed to collect subjective responses from participants under simulated laboratory conditions. Soundscape or noise assessment studies during virtual experiences adopt an evaluation approach similar to in situ methods. This paper aims to review the approaches that are utilized to assess the ecological validity of IVR for the perception of urban sound environments and the necessary technologies during audioâvisual reproduction to establish a dynamic IVR experience that ensures ecological validity. The review shows that, through the use of laboratory tests including subjective response surveys, cognitive performance tests and physiological responses, the ecological validity of IVR can be assessed for the perception of urban sound environments. The reproduction system with head-tracking functions synchronizing spatial audio and visual stimuli (e.g., head-mounted displays (HMDs) with first-order Ambisonics (FOA)-tracked binaural playback) represents the prevailing trend to achieve high ecological validity. These studies potentially contribute to the outcomes of a normalized evaluation framework for subjective soundscape and noise assessments in virtual environment
Oscillating two stream instability at the resonance of obliquely incident radiation in inhomogeneous plasmas
The growth rate and the threshold value were calculated for the oscillating two-stream instability for an electromagnetic wave obliquely incident on an inhomogeneous plasma. The localization of the instability is found to be in the overdense region near the threshold and to shift toward the local plasma resonance when the pump intensity increases. (auth
Exploring relationships between soundscape and lightscape perception: A case study around the Colosseum and Fori Imperiali in Rome
Recently, there has been a growing interest to implement a holistic approach to study perception in urban settings with historic value, in which environmental factors such as acoustics and lighting play an important role. However, little research has addressed sound and light in combination. In this exploratory field study, a soundscape and lightscape protocol was implemented to gather both objective and subjective data. In all, 46 people joined a group walk around the historical sites of Colosseum and Fori Imperiali in Rome. Participants assessed the soundscape and lightscape quality via questionnaire at four locations, immediately before and after the sunset in April 2021. Acoustic parameters (A-weighted equivalent sound level, loudness, sharpness, roughness) and lighting parameters (luminance, colour rendering index and correlated colour temperature) were measured at each location while participants filled in the questionnaire. While there was little variation in the acoustic parameters measured before and after the sunset walks, changes were observed in perceptual data about the soundscape. These outcomes reveal a potential effect of lighting conditions on soundscape perception
Ray-based calculations of backscatter in laser fusion targets
A 1D, steady-state model for Brillouin and Raman backscatter from an
inhomogeneous plasma is presented. The daughter plasma waves are treated in the
strong damping limit, and have amplitudes given by the (linear) kinetic
response to the ponderomotive drive. Pump depletion, inverse-bremsstrahlung
damping, bremsstrahlung emission, Thomson scattering off density fluctuations,
and whole-beam focusing are included. The numerical code DEPLETE, which
implements this model, is described. The model is compared with traditional
linear gain calculations, as well as "plane-wave" simulations with the paraxial
propagation code pF3D. Comparisons with Brillouin-scattering experiments at the
OMEGA Laser Facility [T. R. Boehly et al., Opt. Commun. 133, p. 495 (1997)]
show that laser speckles greatly enhance the reflectivity over the DEPLETE
results. An approximate upper bound on this enhancement, motivated by phase
conjugation, is given by doubling the DEPLETE coupling coefficient. Analysis
with DEPLETE of an ignition design for the National Ignition Facility (NIF) [J.
A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, p. 755
(1994)], with a peak radiation temperature of 285 eV, shows encouragingly low
reflectivity. Re-absorption of Raman light is seen to be significant in this
design.Comment: 16 pages, 19 figure
Building performance evaluation: Balancing energy and indoor environmental quality in a UK school building
There is a policy-driven focus, at present, on improving the energy performance of buildings. However, energy-related issues alone do not capture the full impact of buildings on occupants and the wider environment. The performance of a building also includes occupant wellbeing and indoor environmental quality. Specifically, in schools, indoor environmental quality (thermal comfort, indoor air quality, lighting and acoustics) is an important aspect. Additionally, the issue of the âperformance gapâ, generally focused on energy, also affects indoor environmental quality parameters and needs to be addressed holistically. This paper reports on a holistic building performance evaluation covering aspects of energy, thermal comfort, indoor air quality, lighting and acoustics. It assesses the performance issues and inter-relationships between energy and indoor environmental quality in a recently built school campus in London. Based on the evidence collated from this case study and supplementary literature, the endemic issues and constraints within the construction industry are explored, such as inappropriate design calculations and resistance to new low-carbon technologies. Further, lessons for improved performance in the design, operation and maintenance of schools are highlighted such as factoring in the changing building use trends during design and the significance of optimal operations and maintenance of building systems for better energy and indoor environmental quality performance. This study shows that if the building design focus primarily remains on energy, unintended consequence of indoor environmental quality underperformance may occur where there are conflicts between energy and indoor environmental quality objectives. An integrated approach to building performance can help address this issue. PRACTICAL APPLICATION: There are often conflicts between energy efficiency and indoor environmental quality (IEQ) objectives in building design and operation. Most building performance evaluations are primarily focused on one set of these performance criteria. This building performance evaluation was done with an integrated energy and IEQ perspective. The study identifies the causes of underperformance in energy and IEQ in a recently built school in London. Some of the findings from this study provide lessons that are relevant across the industry for the delivery of low-carbon and healthy buildings. These lessons include methods to further strengthen the policy frameworks and design protocols along with overall improvements in the processes followed during design, construction and operation of schools and other non-domestic buildings. The paper can also inform building designers, contractors and facility managers about the ways to reduce the performance gap and achieve energy targets without unintended consequences for indoor environment
Synapses as therapeutic targets for autism spectrum disorders: an international symposium held in Pavia on july 4th, 2014
New progresses into the molecular and cellular mechanisms of autism spectrum disorders (ASDs) have been discussed in 1 day international symposium held in Pavia (Italy) on July 4th, 2014 entitled âsynapses as therapeutic targets for autism spectrum disordersâ (satellite of the FENS Forum for Neuroscience, Milan, 2014). In particular, world experts in the field have highlighted how animal models of ASDs have greatly advanced our understanding of the molecular pathways involved in synaptic dysfunction leading sometimes to âsynaptic clinical trialsâ in children. © 2014 Curatolo, Ben-Ari, Bozzi, Catania, DâAngelo, Mapelli, Oberman, Rosenmund and Cherubini
Building Performance Evaluation of a New Hospital Building in the UK: Balancing Indoor Environmental Quality and Energy Performance
Hospitals are controlled yet complex ecosystems which provide a therapeutic
environment that promotes healing, wellbeing and work efficiency for patients and staff. As these
buildings accommodate the sick and vulnerable, occupant wellbeing and good indoor
environmental quality (IEQ) that deals with indoor air quality (IAQ), thermal comfort, lighting and
acoustics are important objectives. As the specialist nature of hospital function demands highly
controlled indoor environments, this makes them energy intensive buildings due to the complex
and varying specifications for their functions and operations. This paper reports on a holistic
building performance evaluation covering aspects of indoor air quality, thermal comfort, lighting,
acoustics, and energy use. It assesses the performance issues and inter-relationships between IEQ
and energy in a new building on a hospital campus in the city of Bristol, United Kingdom. The
empirical evidence collated from this case study and the feedback received from the hospital staff
help identify the endemic issues and constraints related to hospital buildings, such as the need for
robust ventilation strategies in hospitals in urban areas that mitigate the effect of indoor and
outdoor air pollution and ensuring the use of planned new low-carbon technologies. Whilst the
existing guidelines for building design provide useful instructions for the protection of hospital
buildings against ingress of particulate matter from outdoors, more advanced filtration strategies
may be required to enact chemical reactions required to control the concentration levels of
pollutants such as nitrogen dioxide and benzene. Further lessons for improved performance in
operation and maintenance of hospitals are highlighted. These include ensuring that the
increasingly available metering and monitoring data in new buildings, through building
management systems, is used for efficient and optimal building operations for better IEQ and
energy management. Overall, the study highlights the need for an integrated and holistic approach
to building performance to ensure that healthy environments are provided while energy efficiency
targets are me
Identification of a pleiotropic locus on chromosome 7q for a composite left ventricular wall thickness factor and body mass index: the HyperGEN Study
<p>Abstract</p> <p>Background</p> <p>Left ventricular (LV) mass and wall thickness are closely associated with measures of body size and blood pressure and also correlated with systolic and diastolic function, suggesting a contribution of common physiologic mechanisms, including pleiotropic genes, to their covariation.</p> <p>Methods</p> <p>Doppler echocardiography was performed in 434 African-American (1344 individuals) and 284 white families (1119 individuals). We conducted a genome-wide linkage scan for LV mass, LV structure and function, and composite factors derived from a factor analysis of LV structure and function in the HyperGEN Study population.</p> <p>Results</p> <p>Factor analysis identified (i) a LV wall thickness factor correlated strongly with interventricular septal thickness (IVSTd) and posterior wall thickness (PWTd) and (ii) a LV diastolic filling factor strongly correlated with early and atrial phase peak transmitral filling velocities. The LV phenotypes and composite factor scores were analyzed in multipoint variance components linkage model implemented in SOLAR with 387 microsatellite markers. In whites, the two highest LODs were 3.42 for LV atrial phase peak filling velocity at 144 cM on chromosome 1 and 3.12 for the LV wall thickness factor at 160 cM on chromosome 7. The peak LODs of the component traits (IVSTd and PWTd) clustered at the same region as the composite factor. Adjusting the factor score for body mass index (BMI) substantially reduced the peak LOD at this region (LOD = 1.92). Bivariate linkage analysis of the composite factor with BMI improved LOD to 3.42 at 158 cM. Also in whites, suggestive linkage was observed on chromosomes 2 and 4 for LV mass, chromosomes 3, 5, 10, and 17 for LV atrial phase peak filling velocity, and chromosome 10 for LV diastolic filling factor. In African Americans, suggestive linkage was observed on chromosome 12 for LV mass, chromosome 21 for IVSTd, and chromosome 3 for LV internal diameter at end-diastole.</p> <p>Conclusion</p> <p>Our study suggests that a region on chromosome 7 contains pleiotropic genes contributing to the variations of both LV wall thickness and BMI in whites.</p
- âŠ