7,201 research outputs found

    Trapping of ultracold polar molecules with a Thin Wire Electrostatic Trap

    Full text link
    We describe the realization of a dc electric-field trap for ultracold polar molecules, the thin-wire electrostatic trap (TWIST). The thin wires that form the electrodes of the TWIST allow us to superimpose the trap onto a magneto-optical trap (MOT). In our experiment, ultracold polar NaCs molecules in their electronic ground state are created in the MOT via photoassociation, achieving a continuous accumulation in the TWIST of molecules in low-field seeking states. Initial measurements show that the TWIST trap lifetime is limited only by the background pressure in the chamber.Comment: 4 pages, 3 figure

    The DEEP2 Galaxy Redshift Survey: Redshift Identification of Single-Line Emission Galaxies

    Get PDF
    We present two methods for determining spectroscopic redshifts of galaxies in the DEEP2 survey which display only one identifiable feature, an emission line, in the observed spectrum ("single-line galaxies"). First, we assume each single line is one of the four brightest lines accessible to DEEP2: Halpha, [OIII] 5007, Hbeta, or [OII] 3727. Then, we supplement spectral information with BRI photometry. The first method, parameter space proximity (PSP), calculates the distance of a single-line galaxy to galaxies of known redshift in (B-R), (R-I), R, observed wavelength parameter space. The second method is an artificial neural network (ANN). Prior information, such as allowable line widths and ratios, rules out one or more of the four lines for some galaxies in both methods. Based on analyses of evaluation sets, both methods are nearly perfect at identifying blended [OII] doublets. Of the lines identified as Halpha in the PSP and ANN methods, 91.4% and 94.2% respectively are accurate. Although the methods are not this accurate at discriminating between [OIII] and Hbeta, they can identify a single line as one of the two, and the ANN method in particular unambiguously identifies many [OIII] lines. From a sample of 640 single-line spectra, the methods determine the identities of 401 (62.7%) and 472 (73.8%) single lines, respectively, at accuracies similar to those found in the evaluation sets.Comment: 11 pages, 6 figures, accepted to Ap

    The DEEP2 Redshift Survey: Lyman Alpha Emitters in the Spectroscopic Database

    Full text link
    We present the first results of a search for Lyman-alpha emitters (LAEs) in the DEEP2 spectroscopic database that uses a search technique that is different from but complementary to traditional narrowband imaging surveys. We have visually inspected ~20% of the available DEEP2 spectroscopic data and have found nine high-quality LAEs with clearly asymmetric line profiles and an additional ten objects of lower quality, some of which may also be LAEs. Our survey is most sensitive to LAEs at z=4.4-4.9 and that is indeed where all but one of our high-quality objects are found. We find the number density of our spectroscopically-discovered LAEs to be consistent with those found in narrowband imaging searches. The combined, averaged spectrum of our nine high-quality objects is well fit by a two-component model, with a second, lower-amplitude component redshifted by ~420 km/s with respect to the primary Lyman-alpha line, consistent with large-scale outflows from these objects. We conclude by discussing the advantages and future prospects of blank-sky spectroscopic surveys for high-z LAEs.Comment: Accepted for publication in Ap

    Transform-limited pulses are not optimal for resonant multiphoton transitions

    Full text link
    Maximizing nonlinear light-matter interactions is a primary motive for compressing laser pulses to achieve ultrashort transform limited pulses. Here we show how, by appropriately shaping the pulses, resonant multiphoton transitions can be enhanced significantly beyond the level achieved by maximizing the pulse's peak intensity. We demonstrate the counterintuitive nature of this effect with an experiment in a resonant two-photon absorption, in which, by selectively removing certain spectral bands, the peak intensity of the pulse is reduced by a factor of 40, yet the absorption rate is doubled. Furthermore, by suitably designing the spectral phase of the pulse, we increase the absorption rate by a factor of 7.Comment: 4 pages, 3 figure

    Pion Interferometry for Hydrodynamical Expanding Source with a Finite Baryon Density

    Full text link
    We calculate the two-pion correlation function for an expanding hadron source with a finite baryon density. The space-time evolution of the source is described by relativistic hydrodynamics and the Hanbury-Brown-Twiss (HBT) radius is extracted after effects of collective expansion and multiple scattering on the HBT interferometry have been taken into account, using quantum probability amplitudes in a path-integral formalism. We find that this radius is substantially smaller than the HBT radius extracted from the freeze-out configuration.Comment: 4 pages, 2 figure

    MMTF: The Maryland-Magellan Tunable Filter

    Full text link
    This paper describes the Maryland-Magellan Tunable Filter (MMTF) on the Magellan-Baade 6.5-meter telescope. MMTF is based on a 150-mm clear aperture Fabry-Perot (FP) etalon that operates in low orders and provides transmission bandpass and central wavelength adjustable from ~5 to ~15 A and from ~5000 to over ~9200 A, respectively. It is installed in the Inamori Magellan Areal Camera and Spectrograph (IMACS) and delivers an image quality of ~0.5" over a field of view of 27' in diameter (monochromatic over ~10'). This versatile and easy-to-operate instrument has been used over the past three years for a wide variety of projects. This paper first reviews the basic principles of FP tunable filters, then provides a detailed description of the hardware and software associated with MMTF and the techniques developed to observe with this instrument and reduce the data. The main lessons learned in the course of the commissioning and implementation of MMTF are highlighted next, before concluding with a brief outlook on the future of MMTF and of similar facilities which are soon coming on line.Comment: 38 pages, 12 figures, 3 tables, now accepted for publication to the Astronomical Journa

    Variations of the ISM Compactness Across the Main Sequence of Star-Forming Galaxies: Observations and Simulations

    Get PDF
    (abridged) The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (M∗M_*) plane, usually referred to as the star formation Main Sequence (MS). Here we combine a set of hydro-dynamical simulations of interacting galactic disks with state-of-the-art radiative transfer codes to analyze how the evolution of mergers is reflected upon the properties of the MS. We present \textsc{Chiburst}, a Markov Chain Monte Carlo (MCMC) Spectral Energy Distribution (SED) code that fits the multi-wavelength, broad-band photometry of galaxies and derives stellar masses, star formation rates, and geometrical properties of the dust distribution. We apply this tool to the SEDs of simulated mergers and compare the derived results with the reference output from the simulations. Our results indicate that changes in the SEDs of mergers as they approach coalescence and depart from the MS are related to an evolution of dust geometry in scales larger than a few hundred parsecs. This is reflected in a correlation between the specific star formation rate (sSFR), and the compactness parameter C\mathcal{C}, that parametrizes this geometry and hence the evolution of dust temperature (TdustT_{\rm{dust}}) with time. As mergers approach coalescence, they depart from the MS and increase their compactness, which implies that moderate outliers of the MS are consistent with late-type mergers. By further applying our method to real observations of Luminous Infrared Galaxies (LIRGs), we show that the merger scenario is unable to explain these extreme outliers of the MS. Only by significantly increasing the gas fraction in the simulations are we able to reproduce the SEDs of LIRGs.Comment: 18 pages, 10 figures, accepted in Ap

    Finite Higgs mass without Supersymmetry

    Get PDF
    We identify a class of chiral models where the one-loop effective potential for Higgs scalar fields is finite without any requirement of supersymmetry. It corresponds to the case where the Higgs fields are identified with the components of a gauge field along compactified extra dimensions. We present a six dimensional model with gauge group U(3)xU(3) and quarks and leptons accomodated in fundamental and bi-fundamental representations. The model can be embedded in a D-brane configuration of type I string theory and, upon compactification on a T^2/Z_2 orbifold, it gives rise to the standard model with two Higgs doublets.Comment: 28 pages, 4 figures, uses axodraw. Some typos corrected and references rearrange
    • 

    corecore