9,891 research outputs found
Generic features of Einstein-Aether black holes
We reconsider spherically symmetric black hole solutions in Einstein-Aether
theory with the condition that this theory has identical PPN parameters as
those for general relativity, which is the main difference from the previous
research. In contrast with previous study, we allow superluminal propagation of
a spin-0 Aether-gravity wave mode. As a result, we obtain black holes having a
spin-0 "horizon" inside an event horizon. We allow a singularity at a spin-0
"horizon" since it is concealed by the event horizon. If we allow such a
configuration, the kinetic term of the Aether field can be large enough for
black holes to be significantly different from Schwarzschild black holes with
respect to ADM mass, innermost stable circular orbit, Hawking temperature, and
so on. We also discuss whether or not the above features can be seen in more
generic vector-tensor theories.Comment: 9 pages, 9 figures, basic equations and their analytic arguments are
adde
Disordered Carbon nanotube alloys in the Effect Medium Super Cell Approximation
We investigate a disordered single-walled carbon nanotube (SWCNT) in an
effective medium super cell approximation (EMSCA).
First type of disorder that we consider is the presence of vacancies.
Our results show that the vacancies induce some bound states on their
neighbor host sites, leading to the creation of a band around the Fermi energy
in the SWCNT average density of states.Second type of disorder considered is a
substitutional alloy due to it's applications in
hetrojunctions. We found that for a fixed boron (nitrogen) concentration, by
increasing the nitrogen (boron) concentration the averaged semiconducting gap,
, decreases and at a critical concentration it disappears. A consequence
of our results for nano electronic devices is that by changing the
boron(nitrogen) concentration, one can make a semiconductor SWCNT with a
pre-determined energy gap.Comment: 4 page
Mechanically-Induced Transport Switching Effect in Graphene-based Nanojunctions
We report a theoretical study suggesting a novel type of electronic switching
effect, driven by the geometrical reconstruction of nanoscale graphene-based
junctions. We considered junction struc- tures which have alternative
metastable configurations transformed by rotations of local carbon dimers. The
use of external mechanical strain allows a control of the energy barrier
heights of the potential profiles and also changes the reaction character from
endothermic to exothermic or vice-versa. The reshaping of the atomic details of
the junction encode binary electronic ON or OFF states, with ON/OFF
transmission ratio that can reach up to 10^4-10^5. Our results suggest the
possibility to design modern logical switching devices or mechanophore sensors,
monitored by mechanical strain and structural rearrangements.Comment: 10 pages, 4 figure
Residue codes of extremal Type II Z_4-codes and the moonshine vertex operator algebra
In this paper, we study the residue codes of extremal Type II Z_4-codes of
length 24 and their relations to the famous moonshine vertex operator algebra.
The main result is a complete classification of all residue codes of extremal
Type II Z_4-codes of length 24. Some corresponding results associated to the
moonshine vertex operator algebra are also discussed.Comment: 21 pages, shortened from v
Decoupled and inhomogeneous gas flows in S0 galaxies
A recent analysis of the "Einstein" sample of early-type galaxies has
revealed that at any fixed optical luminosity Lb S0 galaxies have lower mean
X-ray luminosity Lx per unit Lb than ellipticals. Following a previous
analytical investigation of this problem (Ciotti & Pellegrini 1996), we have
performed 2D numerical simulations of the gas flows inside S0 galaxies in order
to ascertain the effectiveness of rotation and/or galaxy flattening in reducing
the Lx/Lb ratio. The flow in models without SNIa heating is considerably
ordered, and essentially all the gas lost by the stars is cooled and
accumulated in the galaxy center. If rotation is present, the cold material
settles in a disk on the galactic equatorial plane. Models with a time
decreasing SNIa heating host gas flows that can be much more complex. After an
initial wind phase, gas flows in energetically strongly bound galaxies tend to
reverse to inflows. This occurs in the polar regions, while the disk is still
in the outflow phase. In this phase of strong decoupling, cold filaments are
created at the interface between inflowing and outflowing gas. Models with more
realistic values of the dynamical quantities are preferentially found in the
wind phase with respect to their spherical counterparts of equal Lb. The
resulting Lx of this class of models is lower than in spherical models with the
same Lb and SNIa heating. At variance with cooling flow models, rotation is
shown to have only a marginal effect in this reduction, while the flattening is
one of the driving parameters for such underluminosity, in accordance with the
analytical investigation.Comment: 32 pages LaTex file, plus 5 .ps figures and macro aasms4.sty --
Accepted on Ap
Thermal Stability of Metallic Single-Walled Carbon Nanotubes: An O(N) Tight-Binding Molecular Dynamics Simulation Study
Order(N) Tight-Binding Molecular Dynamics (TBMD) simulations are performed to
investigate the thermal stability of (10,10) metallic Single-Walled Carbon
Nanotubes (SWCNT). Periodic boundary conditions (PBC) are applied in axial
direction. Velocity Verlet algorithm along with the canonical ensemble
molecular dynamics (NVT) is used to simulate the tubes at the targeted
temperatures. The effects of slow and rapid temperature increases on the
physical characteristics, structural stability and the energetics of the tube
are investigated and compared. Simulations are carried out starting from room
temperature and the temperature is raised in steps of 300K. Stability of the
simulated metallic SWCNT is examined at each step before it is heated to higher
temperatures. First indication of structural deformation is observed at 600K.
For higher heat treatments the deformations are more pronounced and the bond
breaking temperature is reached around 2500K. Gradual (slow) heating and
thermal equilibrium (fast heating) methods give the value of radial thermal
expansion coefficient in the temperature range between 300K-600K as
0.31x10^{-5}(1/K) and 0.089x10^{-5}(1/K), respectively. After 600K, both
methods give the same value of 0.089x10^{-5}(1/K). The ratio of the total
energy per atom with respect to temperature is found to be 3x10^{-4} eV/K
History Memorized and Recalled upon Glass Transition
The memory effect upon glassification is studied in the glass to rubber
transition of vulcanized rubber with the strain as a controlling parameter. A
phenomenological model is proposed taking the history of the temperature and
the strain into account, by which the experimental results are interpreted. The
data and the model demonstrate that the glassy state memorizes the time-course
of strain upon glassification, not as a single parameter but as the history
itself. The data also show that the effect of irreversible deformation in the
glassy state is beyond the scope of the present model.
Authors' remark: The title of the paper in the accepted version is above. The
title appeared in PRL is the one changed by a Senior Assistant Editor after
acceptance of the paper. The recovery of the title was rejected in the
correction process.Comment: 4 pages, 4 figure
Dynamical Evolution of Globular Clusters in Hierarchical Cosmology
We probe the evolution of globular clusters that could form in giant
molecular clouds within high-redshift galaxies. Numerical simulations
demonstrate that the large and dense enough gas clouds assemble naturally in
current hierarchical models of galaxy formation. These clouds are enriched with
heavy elements from earlier stars and could produce star clusters in a similar
way to nearby molecular clouds. The masses and sizes of the model clusters are
in excellent agreement with the observations of young massive clusters. Do
these model clusters evolve into globular clusters that we see in our and
external galaxies? In order to study their dynamical evolution, we calculate
the orbits of model clusters using the outputs of the cosmological simulation
of a Milky Way-sized galaxy. We find that at present the orbits are isotropic
in the inner 50 kpc of the Galaxy and preferentially radial at larger
distances. All clusters located outside 10 kpc from the center formed in the
now-disrupted satellite galaxies. The spatial distribution of model clusters is
spheroidal, with a power-law density profile consistent with observations. The
combination of two-body scattering, tidal shocks, and stellar evolution results
in the evolution of the cluster mass function from an initial power law to the
observed log-normal distribution.Comment: 5 pages, proceedings of IAU 246 "Dynamical Evolution of Dense Stellar
Systems", eds. Vesperini, Giersz, Sill
The Potential of Insect Farming to Increase Food Security
Insect protein production through ‘mini-livestock farming’ has enormous potential to reduce the level of undernutrition in critical areas across the world. Sustainable insect farming could contribute substantially to increased food security, most especially in areas susceptible to environmental stochasticity. Entomophagy has long been acknowledged as an underutilised strategy to address issues of food security. This chapter reviews and provides a synthesis of the literature surrounding the potential of insect farming to alleviate food security while promoting food sovereignty and integrating social acceptability. These are immediate and current problems of food security and nutrition that must be solved to meet the UNDP Sustainable Development Goals
- …