2,306 research outputs found

    Near term measurements with 21 cm intensity mapping: neutral hydrogen fraction and BAO at z<2

    Full text link
    It is shown that 21 cm intensity mapping could be used in the near term to make cosmologically useful measurements. Large scale structure could be detected using existing radio telescopes, or using prototypes for dedicated redshift survey telescopes. This would provide a measure of the mean neutral hydrogen density, using redshift space distortions to break the degeneracy with the linear bias. We find that with only 200 hours of observing time on the Green Bank Telescope, the neutral hydrogen density could be measured to 25% precision at redshift 0.54<z<1.09. This compares favourably to current measurements, uses independent techniques, and would settle the controversy over an important parameter which impacts galaxy formation studies. In addition, a 4000 hour survey would allow for the detection of baryon acoustic oscillations, giving a cosmological distance measure at 3.5% precision. These observation time requirements could be greatly reduced with the construction of multiple pixel receivers. Similar results are possible using prototypes for dedicated cylindrical telescopes on month time scales, or SKA pathfinder aperture arrays on day time scales. Such measurements promise to improve our understanding of these quantities while beating a path for future generations of hydrogen surveys.Comment: 6 pages, 5 figures. Submitted to Phys. Rev. D. Addressed reviewer comments. Changed figure format, added more detailed technical discussion, and added forecasts for aperture arrays. Added references

    Lack of clustering in low-redshift 21-cm intensity maps cross-correlated with 2dF galaxy densities

    Full text link
    We report results from 21-cm intensity maps acquired from the Parkes radio telescope and cross-correlated with galaxy maps from the 2dF galaxy survey. The data span the redshift range 0.057<z<0.0980.057<z<0.098 and cover approximately 1,300 square degrees over two long fields. Cross correlation is detected at a significance of 5.18σ5.18\sigma. The amplitude of the cross-power spectrum is low relative to the expected dark matter power spectrum, assuming a neutral hydrogen (HI) bias and mass density equal to measurements from the ALFALFA survey. The decrement is pronounced and statistically significant at small scales. At k∼1.5k\sim1.5 hMpc−1 h \mathrm{Mpc^{-1}}, the cross power spectrum is more than a factor of 6 lower than expected, with a significance of 14.8 σ14.8\,\sigma. This decrement indicates either a lack of clustering of neutral hydrogen (HI), a small correlation coefficient between optical galaxies and HI, or some combination of the two. Separating 2dF into red and blue galaxies, we find that red galaxies are much more weakly correlated with HI on k∼1.5k\sim1.5 hMpc−1h \mathrm{Mpc^{-1}} scales, suggesting that HI is more associated with blue star-forming galaxies and tends to avoid red galaxies.Comment: 12 pages, 3 figures; fixed typo in meta-data title and paper author

    Superconducting electronic state in optimally doped YBa2Cu3O7-d observed with laser-excited angle-resolved photoemission spectroscopy

    Full text link
    Low energy electronic structure of optimally doped YBa2Cu3O7-d is investigated using laser-excited angle-resolved photoemission spectroscopy. The surface state and the CuO chain band that usually overlap the CuO2 plane derived bands are not detected, thus enabling a clear observation of the bulk superconducting state. The observed bilayer splitting of the Fermi surface is ~0.08 angstrom^{-1} along the (0,0)-(pi,pi) direction, significantly larger than Bi2Sr2CaCu2O8+d. The kink structure of the band dispersion reflecting the renormalization effect at ~60 meV shows up similarly as in other hole-doped cuprates. The momentum-dependence of the superconducting gap shows d_{x^2-y^2}-wave like amplitude, but exhibits a nonzero minimum of ~12 meV along the (0,0)-(pi,pi) direction. Possible origins of such an unexpected "nodeless" gap behavior are discussed.Comment: 9 pages, 10 figures; revised version accepted for publication in Phys. Rev.

    Interpreting The Unresolved Intensity Of Cosmologically Redshifted Line Radiation

    Get PDF
    Intensity mapping experiments survey the spectrum of diffuse line radiation rather than detect individual objects at high signal-to-noise ratio. Spectral maps of unresolved atomic and molecular line radiation contain three-dimensional information about the density and environments of emitting gas and efficiently probe cosmological volumes out to high redshift. Intensity mapping survey volumes also contain all other sources of radiation at the frequencies of interest. Continuum foregrounds are typically approximately 10(sup 2)-10(Sup 3) times brighter than the cosmological signal. The instrumental response to bright foregrounds will produce new spectral degrees of freedom that are not known in advance, nor necessarily spectrally smooth. The intrinsic spectra of fore-grounds may also not be well known in advance. We describe a general class of quadratic estimators to analyze data from single-dish intensity mapping experiments and determine contaminated spectral modes from the data themselves. The key attribute of foregrounds is not that they are spectrally smooth, but instead that they have fewer bright spectral degrees of freedom than the cosmological signal. Spurious correlations between the signal and foregrounds produce additional bias. Compensation for signal attenuation must estimate and correct this bias. A successful intensity mapping experiment will control instrumental systematics that spread variance into new modes, and it must observe a large enough volume that contaminant modes can be determined independently from the signal on scales of interest

    An Isotopic Fingerprint of Electron-Phonon Coupling in High-Tc Cuprates

    Full text link
    Angle-resolved photoemission spectroscopy with low-energy tunable photons along the nodal direction of oxygen isotope substituted Bi2Sr2CaCu2O8+delta reveals a distinct oxygen isotope shift near the electron-boson coupling "kink" in the electronic dispersion. The magnitude (a few meV) and direction of the kink shift are as expected due to the measured isotopic shift of phonon frequency, which are also in agreement with theoretical expectations. This demonstrates the participation of the phonons as dominant players, as well as pinpointing the most relevant of the phonon branches.Comment: 5 pages, 3 figure

    Erasing the Milky Way: new cleaning technique applied to GBT intensity mapping data

    Get PDF
    We present the first application of a new foreground removal pipeline to the current leading H I intensity mapping data set, obtained by the Green Bank Telescope (GBT). We study the 15- and 1-h-field data of the GBT observations previously presented in Mausui et al. and Switzer et al., covering about 41 deg2 at 0.6 < z < 1.0, for which cross-correlations may be measured with the galaxy distribution of the WiggleZ Dark Energy Survey. In the presented pipeline, we subtract the Galactic foreground continuum and the point-source contamination using an independent component analysis technique (FASTICA), and develop a Fourier-based optimal estimator to compute the temperature power spectrum of the intensity maps and cross-correlation with the galaxy survey data. We show that FASTICA is a reliable tool to subtract diffuse and point-source emission through the non-Gaussian nature of their probability distributions. The temperature power spectra of the intensity maps are dominated by instrumental noise on small scales which FASTICA, as a conservative subtraction technique of non-Gaussian signals, cannot mitigate. However, we determine similar GBT-WiggleZ cross-correlation measurements to those obtained by the singular value decomposition (SVD) method, and confirm that foreground subtraction with FASTICA is robust against 21 cm signal loss, as seen by the converged amplitude of these cross-correlation measurements. We conclude that SVD and FASTICA are complementary methods to investigate the foregrounds and noise systematics present in intensity mapping data sets

    Superconducting Volume Fraction in Overdoped Regime of La_2-x_Sr_x_CuO_4_: Implication for Phase Separation from Magnetic-Susceptibility Measurement

    Full text link
    We have grown a single crystal of La_2-x_Sr_x_CuO_4_ in which the Sr concentration, x, continuously changes from 0.24 to 0.29 in the overdoped regime and obtained many pieces of single crystals with different x values by slicing the single crystal. From detailed measurements of the magnetic susceptibility, chi, of each piece, it has been found that the absolute value of chi at the measured lowest temperature 2 K, |chi_2K_|, on field cooling rapidly decreases with increasing x as well as the superconducting (SC) transition temperature. As the value of |chi_2K_| is regarded as corresponding to the SC volume fraction in a sample, it has been concluded that a phase separation into SC and normal-state regions occurs in a sample of La_2-x_Sr_x_CuO_4_ in the overdoped regime.Comment: 4 pages, 3 figures, ver. 2 has been accepted in J. Phys. Soc. Jp
    • …
    corecore