55 research outputs found
Spin network setting of topological quantum computation
The spin network simulator model represents a bridge between (generalised)
circuit schemes for standard quantum computation and approaches based on
notions from Topological Quantum Field Theories (TQFTs). The key tool is
provided by the fiber space structure underlying the model which exhibits
combinatorial properties closely related to SU(2) state sum models, widely
employed in discretizing TQFTs and quantum gravity in low spacetime dimensions.Comment: Proc. "Foundations of Quantum Information", Camerino (Italy), 16-19
April 2004, to be published in Int. J. of Quantum Informatio
Quantum states of elementary three-geometry
We introduce a quantum volume operator in three--dimensional Quantum
Gravity by taking into account a symmetrical coupling scheme of three SU(2)
angular momenta. The spectrum of is discrete and defines a complete set of
eigenvectors which is alternative with respect to the complete sets employed
when the usual binary coupling schemes of angular momenta are considered. Each
of these states, that we call quantum bubbles, represents an interference of
extended configurations which provides a rigorous meaning to the heuristic
notion of quantum tetrahedron. We study the generalized recoupling coefficients
connecting the symmetrical and the binary basis vectors, and provide an
explicit recursive solution for such coefficients by analyzing also its
asymptotic limit.Comment: 15 pages, LaTe
Quantum Knitting
We analyze the connections between the mathematical theory of knots and
quantum physics by addressing a number of algorithmic questions related to both
knots and braid groups.
Knots can be distinguished by means of `knot invariants', among which the
Jones polynomial plays a prominent role, since it can be associated with
observables in topological quantum field theory.
Although the problem of computing the Jones polynomial is intractable in the
framework of classical complexity theory, it has been recently recognized that
a quantum computer is capable of approximating it in an efficient way. The
quantum algorithms discussed here represent a breakthrough for quantum
computation, since approximating the Jones polynomial is actually a `universal
problem', namely the hardest problem that a quantum computer can efficiently
handle.Comment: 29 pages, 5 figures; to appear in Laser Journa
Post Quantum Cryptography from Mutant Prime Knots
By resorting to basic features of topological knot theory we propose a
(classical) cryptographic protocol based on the `difficulty' of decomposing
complex knots generated as connected sums of prime knots and their mutants. The
scheme combines an asymmetric public key protocol with symmetric private ones
and is intrinsecally secure against quantum eavesdropper attacks.Comment: 14 pages, 5 figure
Quantum geometry and quantum algorithms
Motivated by algorithmic problems arising in quantum field theories whose
dynamical variables are geometric in nature, we provide a quantum algorithm
that efficiently approximates the colored Jones polynomial. The construction is
based on the complete solution of Chern-Simons topological quantum field theory
and its connection to Wess-Zumino-Witten conformal field theory. The colored
Jones polynomial is expressed as the expectation value of the evolution of the
q-deformed spin-network quantum automaton. A quantum circuit is constructed
capable of simulating the automaton and hence of computing such expectation
value. The latter is efficiently approximated using a standard sampling
procedure in quantum computation.Comment: Submitted to J. Phys. A: Math-Gen, for the special issue ``The
Quantum Universe'' in honor of G. C. Ghirard
The modular geometry of Random Regge Triangulations
We show that the introduction of triangulations with variable connectivity
and fluctuating egde-lengths (Random Regge Triangulations) allows for a
relatively simple and direct analyisis of the modular properties of 2
dimensional simplicial quantum gravity. In particular, we discuss in detail an
explicit bijection between the space of possible random Regge triangulations
(of given genus g and with N vertices) and a suitable decorated version of the
(compactified) moduli space of genus g Riemann surfaces with N punctures. Such
an analysis allows us to associate a Weil-Petersson metric with the set of
random Regge triangulations and prove that the corresponding volume provides
the dynamical triangulation partition function for pure gravity.Comment: 36 pages corrected typos, enhanced introductio
Spin networks, quantum automata and link invariants
The spin network simulator model represents a bridge between (generalized)
circuit schemes for standard quantum computation and approaches based on
notions from Topological Quantum Field Theories (TQFT). More precisely, when
working with purely discrete unitary gates, the simulator is naturally modelled
as families of quantum automata which in turn represent discrete versions of
topological quantum computation models. Such a quantum combinatorial scheme,
which essentially encodes SU(2) Racah--Wigner algebra and its braided
counterpart, is particularly suitable to address problems in topology and group
theory and we discuss here a finite states--quantum automaton able to accept
the language of braid group in view of applications to the problem of
estimating link polynomials in Chern--Simons field theory.Comment: LateX,19 pages; to appear in the Proc. of "Constrained Dynamics and
Quantum Gravity (QG05), Cala Gonone (Italy) September 12-16 200
Reconstructing Quantum Geometry from Quantum Information: Spin Networks as Harmonic Oscillators
Loop Quantum Gravity defines the quantum states of space geometry as spin
networks and describes their evolution in time. We reformulate spin networks in
terms of harmonic oscillators and show how the holographic degrees of freedom
of the theory are described as matrix models. This allow us to make a link with
non-commutative geometry and to look at the issue of the semi-classical limit
of LQG from a new perspective. This work is thought as part of a bigger project
of describing quantum geometry in quantum information terms.Comment: 16 pages, revtex, 3 figure
- …