2,337 research outputs found

    Mixtures of Bose gases confined in concentrically coupled annular traps

    Full text link
    A two-component Bose-Einstein condensate confined in an axially-symmetric potential with two local minima, resembling two concentric annular traps, is investigated. The system shows a number of quantum phase transitions that result from the competition between phase coexistence, and radial/azimuthal phase separation. The ground-state phase diagram, as well as the rotational properties, including the (meta)stability of currents in this system, are analysed.Comment: 6 pages, 5 figures, minor revision

    Chemical modification strategies to prepare advanced protein-based biomaterials

    Get PDF
    Nature is a superb source of inspiration when it comes to the development of biomaterials. Proteins, an exquisite asset virtually involved in all biological functions, are envisioned as a biomaterial due to their ability to be chemically modified. Owing to the rich chemical repertoire provided by the side chains and C-/N-terminus present in their backbone, scientists are pursuing chemical ways to upgrade isolated proteins, while maintaining their biological activity or relevant structural properties. By inserting chemical motifs, the crosslinking capability of proteins and capability to attach biochemical and molecular groups can be controlled yielding nano to macro constructs and hydrogels with improved physicochemical and mechanical properties. These cutting-edge approaches elevate the potential use of proteins as promising biomaterials for biotechnology and biomedicine.publishe

    AdS3 Gravitational Instantons from Conformal Field Theory

    Full text link
    A conformal field theory on the boundary of three-dimensional asymptotic anti-de Sitter spaces which appear as near horizon geometry of D-brane bound states is discussed. It is shown that partition functions of gravitational instantons appear as high and low temperature limits of the partition function of the conformal field theory. The result reproduces phase transition between the anti-de Sitter space and the BTZ black hole in the bulk gravity.Comment: 22 pages, minor correction

    Preparation of starch-based scaffolds for tissue engineering by supercritical immersion precipitation

    Get PDF
    The aim of this study was to evaluate the possibility of preparing starch-based porous matrixes using supercritical fluid technology. Supercritical immersion precipitation technique was used to prepare scaffolds of a polymeric blend of starch and poly(l-lactic acid) for tissue engineering purposes.Immersion precipitation experiments were carried out at different operational conditions and highly porous and interconnected scaffolds were obtained. Two organic solvents, dichloromethane and chloroform were tested, and from the results obtained chloroform was the more favourable for the process. The effect of polymer solution concentration (5 up to 20 wt%), temperature (35 up to 55 ◦C) and pressure (100 up to 200 bar) in the SPLA (50:50 wt%) membrane morphology, porosity and interconnectivity was evaluated. All the conditions tested were in the region of total miscibility between the organic solvent and carbon dioxide. Additionally, a blend with a different starch-poly(l-lactic acid) ratio (30:70 wt%) was tested. Bicontinuous structures were formed indicating that the L–L demixing process that governs the phase inversion is the spinodal decomposition.Ana Rita C. Duarte is grateful for financial support from Fundacao para a Ciencia a Tecnologia through the grant SFRH/BPD/34994/2007

    The role of organic solvent on the preparation of chitosan scaffolds by supercritical assisted phase inversion

    Get PDF
    The aim of this study was to evaluate the possibility of preparing chitosan porous matrixes using supercritical fluid technology. Supercritical immersion precipitation technique was used to prepare scaffolds of a natural biocompatible polymer, chitosan for tissue engineering purposes. The physicochemical and biological properties of chitosan make it an excellent material for the preparation of drug delivery systems and for the development of new biomedical applications in many fields from skin to bone or cartilage. Supercritical assisted phase inversion experiments were carried out and the effect of different organic solvents on the morphology of the scaffolds was assessed. Chitosan scaffold morphology, porosity and pore size were evaluated by SEM and micro-CT. A thermodynamic analysis of the process was carried out and insights on the solubility parameter and Flory–Huggins interaction parameters are given. The preparation of a highly porous and interconnected structure of a natural material, chitosan, using a clean and environmentally friendly technology constitutes a new processing technology for the preparation of scaffolds for tissue engineering using these materials.Ana Rita C. Duarte is grateful for financial support from Fundacao para a Ciencia e Tecnologia (FCT) through the grant SFRH/BPD/34994/2007. The support through the FCT project PTDC/QUI/68804/2006 is also acknowledged

    Dexamethasone-loaded scaffolds prepared by supercritical assisted phase inversion

    Get PDF
    The aim of this study was to evaluate the possibility of preparing dexamethasone-loaded starch-based porous matrices in a one-step process. Supercritical phase inversion technique was used to prepare composite scaffolds of dexamethasone and a polymeric blend of starch and poly(L-lactic acid) (SPLA) for tissue engineering purposes. Dexamethasone is used in osteogenic media to direct the differentiation of stem cells towards the osteogenic lineage. Samples with different drug concentrations (5–15 wt.% polymer) were prepared at 200 bar and 55 C. The presence of dexamethasone did not affect the porosity or interconnectivity of the polymeric matrices. Water uptake and degradation studies were also performed on SPLA scaffolds. We conclude that SPLA matrices prepared by supercritical phase inversion have a swelling degree of nearly 90% and the material presents a weight loss of 25% after 21 days in solution. Furthermore, in vitro drug release studies were carried out and the results show that a sustained release of dexamethasone was achieved over 21 days. The fitting of the power law to the experimental data demonstrated that drug release is governed by an anomalous transport, i.e., both the drug diffusion and the swelling of the matrix influence the release of dexamethasone out of the scaffold. The kinetic constant was also determined. This study reports the feasibility of using supercritical fluid technology to process in one step a porous matrix loaded with a pharmaceutical agent for tissue engineering purposes.Ana Rita C. Duarte is grateful for financial support from Fundatyao para a Ciencia a Tecnologia through the Grant SFRH/BPD/34994/2007

    Cell adhesion in free-standing multilayer films made of chitosan and alginate

    Get PDF
    The method for preparing multilayer ultrathin films by the consecu- tive deposition of oppositely charged polyelectrolytes has gained tre- mendous recognition due the user friendly preparation, capability of incorporating high loads of different types of biomolecules in the films, fine control over the materials’ structure, and robustness of the products under ambient and physiological conditions. However the preparation of such films needs the assembly on a substrate and, sometimes, cannot be detached from it, which has limited the appli- cation of such films in areas as tissue engineering and regenerative medicine (TERM).Thus, the production of free-standing films is of extreme importance once it allows the direct experimental determi- nation of many physical properties of fundamental significance such as ion permeation and mechanical properties that can be tuned for real-world applications. In this work, we investigated the elaboration of free-standing multilayer films made of chitosan (CHI) and alginate (ALG), by detaching a polyelectrolyte multilayer film from its under- lying substrate without any postprocessing step. The conditions for optimized film growth were investigated. The adhesion of C2C12 myoblast cells on the CHI/ALG membrane was assessed by cytoskele- tal and nuclear staining. A good cell adhesion and spreading was observed all over the surface. The results demonstrate the potential of such biocompatible free standing membranes made of CHI and ALG for applications in TERM

    Polymer processing using supercritical fluid based technologies for drug delivery and tissue engineering applications

    Get PDF
    From the use of botanical plants in early human civilizations through synthetic chemistry and biotechnology, drug research has always passionate scientists creating exciting challenges to a large number of researchers from different fields, thus, promoting a collaborative effort between polymer scientists, pharmacologists, engineers, chemists and medical researchers. Worldwide, there is an increasing concern on health care that creates a major opportunity for development of new pharmaceutical formulations. Ageing populations worried about the quality of life in the older years are actively seeking for new, more effective and patient compliant drug delivery devices. This has been the driving force for the continuous growth of the research made on delivery devices, which has become a powerful technique in health care. It has been recognized for long that simple pills or injections may not be the suitable methods of administration of a certain active compound. These medications present several problems and/or limitations, like poor drug bioavailability and systemic toxicity, derived essentially from pharmacokinetic and other carrier limitations and low solubility of the drugs in water. Therefore and to overcome these drawbacks, clinicians recommend frequent drug dosing, at high concentrations, in order to overcome poor drug bioavailability but causing a potential risk of systemic toxicity. Polymer science has open new strategies for drug delivery systems. This Chapter overviews of possible strategies involving polymer modification and processing for controlled drug delivery and drug delivery in tissue engineering.European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number REGPOT-CT2012-316331-POLARIS and from the project “Novel smart and biomimetic materials for innovative regenerative medicine approaches” RL1 -ABMR-NORTE-01-0124-FEDER-000016 cofinanced by North Portugal Regional Operational Programme (ON.2 –O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF)

    Preparation of chitosan scaffolds for tissue engineering using supercritical fluid technology

    Get PDF
    The aim of this study was to evaluate the possibility of preparing chitosan porous matrixes using supercritical fluid technology. Supercritical immersion precipitation technique was used to prepare scaffolds of a natural biocompatible polymer, chitosan, for tissue engineering purposes. The physicochemical and biological properties of chitosan make it an excellent material for the preparation of drug delivery systems and for the development of new biomedical applications in many fields from skin to bone or cartilage. Immersion precipitation experiments were carried out at different operational conditions in order to optimize the processing method. The effect of different organic solvents on the morphology of the scaffolds was assessed. Additionally, different parameters that influence the process were tested and the effect of the processing variables such as polymer concentration, temperature and pressure in the chitosan scaffold morphology, porosity and interconnectivity was evaluated by micro computed tomography. The preparation of a highly porous and interconnected structure of a natural material, chitosan, using a clean and environmentally friendly technology constitutes a new processing technology for the preparation of scaffolds for tissue engineering using these materials
    • …
    corecore