10,757 research outputs found

    Ultra-nonlocality in density functional theory for photo-emission spectroscopy

    Full text link
    We derive an exact expression for the photo-current of photo-emission spectroscopy using time-dependent current density functional theory (TDCDFT). This expression is given as an integral over the Kohn-Sham spectral function renormalized by effective potentials that depend on the exchange-correlation kernel of current density functional theory. We analyze in detail the physical content of this expression by making a connection between the density-functional expression and the diagrammatic expansion of the photo-current within many-body perturbation theory. We further demonstrate that the density functional expression does not provide us with information on the kinetic energy distribution of the photo-electrons. Such information can, in principle, be obtained from TDCDFT by exactly modeling the experiment in which the photo-current is split into energy contributions by means of an external electromagnetic field outside the sample, as is done in standard detectors. We find, however, that this procedure produces very nonlocal correlations between the exchange-correlation fields in the sample and the detector.Comment: 11 pages, 11 figure

    Analysis of The Hipparcos Measurements of HD10697 - A Mass Determination of a Brown-Dwarf Secondary

    Get PDF
    HD10697 is a nearby main-sequence star around which a planet candidate has recently been discovered by means of radial-velocity measurements (Vogt et al. 1999, submitted to ApJ). The stellar orbit has a period of about three years, the secondary minimum mass is 6.35 Jupiter masses and the minimum semi-major axis is 0.36 milli-arc-sec (mas). Using the Hipparcos data of HD10697 together with the spectroscopic elements of Vogt et al. (1999) we found a semi-major axis of 2.1 +/- 0.7 mas, implying a mass of 38 +/- 13 Jupiter masses for the unseen companion. We therefore suggest that the secondary of HD10697 is probably a brown dwarf, orbiting around its parent star at a distance of 2 AU.Comment: 6 pages, 2 figures, LaTex, aastex, accepted for publication by ApJ Letter

    Atom lithography without laser cooling

    Get PDF
    Using direct-write atom lithography, Fe nanolines are deposited with a pitch of 186 nm, a full width at half maximum (FWHM) of 50 nm, and a height of up to 6 nm. These values are achieved by relying on geometrical collimation of the atomic beam, thus without using laser collimation techniques. This opens the way for applying direct-write atom lithography to a wide variety of elements.Comment: 7 pages, 11 figure

    Samenwerken aan integrale omgevingsvisies met water

    Get PDF
    In deze handreiking wordt (in navolging van de centrale doelen van de Omgevingswet) ingegaan op de leerervaringen in de bestudeerde pilots ten aanzien van de vier leerpijlers die centraal hebben gestaan, namelijk: participatie, integraliteit en samenhang, cultuurverandering en digitalisering. Daarbij wordt ook nadrukkelijk ingegaan op de rol die waterschappen hebben ingenomen in de pilots en mogelijk in kunnen nemen in toekomstige projecten

    Spin-polarized stable phases of the 2-D electron fluid at finite temperatures

    Full text link
    The Helmholtz free energy F of the interacting 2-D electron fluid is calculated nonperturbatively using a mapping of the quantum fluid to a classical Coulomb fluid [Phys. Rev. Letters, vol. 87, 206404 (2001)]. For density parameters rs such that rs<~25, the fluid is unpolarized at all temperatures t=T/EF where EF is the Fermi energy. For lower densities, the system becomes fully spin polarized for t<~0.35, and partially polarized for 0.35<t< 2, depending on the density. At rs ~25-30, and t ~0.35, an ''ambispin'' phase where F is almost independent of the spin polarization is found. These results support recent claims, based on quantum Monte Carlo results, for a stable, fully spin-polarized fluid phase at T = 0 for rs larger than about 25-26.Comment: Latex manuscript (4-5 pages) and two postscript figures; see also http://nrcphy1.phy.nrc.ca/ims/qp/chandre/chnc

    Global fixed point proof of time-dependent density-functional theory

    Full text link
    We reformulate and generalize the uniqueness and existence proofs of time-dependent density-functional theory. The central idea is to restate the fundamental one-to-one correspondence between densities and potentials as a global fixed point question for potentials on a given time-interval. We show that the unique fixed point, i.e. the unique potential generating a given density, is reached as the limiting point of an iterative procedure. The one-to-one correspondence between densities and potentials is a straightforward result provided that the response function of the divergence of the internal forces is bounded. The existence, i.e. the v-representability of a density, can be proven as well provided that the operator norms of the response functions of the members of the iterative sequence of potentials have an upper bound. The densities under consideration have second time-derivatives that are required to satisfy a condition slightly weaker than being square-integrable. This approach avoids the usual restrictions of Taylor-expandability in time of the uniqueness theorem by Runge and Gross [Phys.Rev.Lett.52, 997 (1984)] and of the existence theorem by van Leeuwen [Phys.Rev.Lett. 82, 3863 (1999)]. Owing to its generality, the proof not only answers basic questions in density-functional theory but also has potential implications in other fields of physics.Comment: 4 pages, 1 figur

    Nuclear collisions at the Future Circular Collider

    Full text link
    The Future Circular Collider is a new proposed collider at CERN with centre-of-mass energies around 100 TeV in the pp mode. Ongoing studies aim at assessing its physics potential and technical feasibility. Here we focus on updates in physics opportunities accessible in pA and AA collisions not covered in previous Quark Matter contributions, including Quark-Gluon Plasma and gluon saturation studies, novel hard probes of QCD matter, and photon-induced collisions.Comment: 4 pages, 5 figures, proceedings of Quark Matter 201

    Total energies from variational functionals of the Green function and the renormalized four-point vertex

    Get PDF
    We derive variational expressions for the grand potential or action in terms of the many-body Green function GG which describes the propagation of particles and the renormalized four-point vertex Γ\Gamma which describes the scattering of two particles in many-body systems. The main ingredient of the variational functionals is a term we denote as the Ξ\Xi-functional which plays a role analogously to the usual Φ\Phi-functional studied by Baym (G.Baym, Phys.Rev. 127, 1391 (1962)) in connection with the conservation laws in many-body systems. We show that any Ξ\Xi-derivable theory is also Φ\Phi-derivable and therefore respects the conservation laws. We further set up a computational scheme to obtain accurate total energies from our variational functionals without having to solve computationally expensive sets of self-consistent equations. The input of the functional is an approximate Green function G~\tilde{G} and an approximate four-point vertex Γ~\tilde{\Gamma} obtained at a relatively low computational cost. The variational property of the functional guarantees that the error in the total energy is only of second order in deviations of the input Green function and vertex from the self-consistent ones that make the functional stationary. The functionals that we will consider for practical applications correspond to infinite order summations of ladder and exchange diagrams and are therefore particularly suited for applications to highly correlated systems. Their practical evaluation is discussed in detail.Comment: 21 pages, 10 figures. Physical Review B (accepted

    Age, Metallicity, and the Distance to the Magellanic Clouds From Red Clump Stars

    Get PDF
    We show that the luminosity dependence of the red clump stars on age and metallicity can cause a difference of up to < ~0.6 mag in the mean absolute I magnitude of the red clump between different stellar populations. We show that this effect may resolve the apparent ~0.4 mag discrepancy between red clump-derived distance moduli to the Magellanic Clouds and those from, e.g., Cepheid variables. Taking into account the population effects on red clump luminosity, we determine a distance modulus to the LMC of 18.36 +/- 0.17 mag, and to the SMC of 18.82 +/- 0.20 mag. Our alternate red clump LMC distance is consistent with the value (m-M){LMC} = 18.50 +/- 0.10 adopted by the HST Cepheid Key Project. We briefly examine model predictions of red clump luminosity, and find that variations in helium abundance and core mass could bring the Clouds closer by some 0.10--0.15 mag, but not by the ~0.4 mag that would result from setting the mean absolute I-magnitude of the Cloud red clumps equal to the that of the Solar neighborhood red clump.Comment: Accepted for publication in The Astrophysical Journal Letters, AASTeX 4.0, 10 pages, 1 postscript figur

    A charged particle in a magnetic field - Jarzynski Equality

    Full text link
    We describe some solvable models which illustrate the Jarzynski theorem and related fluctuation theorems. We consider a charged particle in the presence of magnetic field in a two dimensional harmonic well. In the first case the centre of the harmonic potential is translated with a uniform velocity, while in the other case the particle is subjected to an ac force. We show that Jarzynski identity complements Bohr-van Leeuwen theorem on the absence of diamagnetism in equilibrium classical system.Comment: 5 pages, minor corrections made and journal reference adde
    • …
    corecore