100 research outputs found

    NMR and Mossbauer study of spin dynamics and electronic structure of Fe{2+x}V{1-x}Al and Fe2VGa

    Get PDF
    In order to assess the magnetic ordering process in Fe2VAl and the related material Fe2VGa, we have carried out nuclear magnetic resonance (NMR) and Mossbauer studies. 27Al NMR relaxation measurements covered the temperature range 4 -- 500 K in Fe(2+x)V(1-x)Al samples. We found a peak in the NMR spin-lattice relaxation rate, 27T1^-1, corresponding to the magnetic transitions in each of these samples. These peaks appear at 125 K, 17 K, and 165 K for x = 0.10, 0, and - 0.05 respectively, and we connect these features with critical slowing down of the localized antisite defects. Mossbauer measurements for Fe2VAl and Fe2VGa showed lines with no hyperfine splitting, and isomer shifts nearly identical to those of the corresponding sites in Fe3Al and Fe3Ga, respectively. We show that a model in which local band filling leads to magnetic regions in the samples, in addition to the localized antisite defects, can account for the observed magnetic ordering behavior.Comment: 5 pages, 3 figure

    Impact of today's media on university student's body image in Pakistan: a conservative, developing country's perspective

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Living in a world greatly controlled by mass media makes it impossible to escape its pervading influence. As media in Pakistan has been free in the true sense of the word for only a few years, its impact on individuals is yet to be assessed. Our study aims to be the first to look at the effect media has on the body image of university students in a conservative, developing country like Pakistan. Also, we introduced the novel concept of body image dissatisfaction as being both negative and positive.</p> <p>Methods</p> <p>A cross-sectional study was conducted among 7 private universities over a period of two weeks in the city of Karachi, Pakistan's largest and most populous city. Convenience sampling was used to select both male and female undergraduate students aged between 18 and 25 and a sample size of 783 was calculated.</p> <p>Results</p> <p>Of the 784 final respondents, 376 (48%) were males and 408 (52%) females. The mean age of males was 20.77 (+/- 1.85) years and females was 20.38 (+/- 1.63) years. Out of these, 358 (45.6%) respondents had a positive BID (body image dissatisfaction) score while 426 (54.4%) had a negative BID score. Of the respondents who had positive BID scores, 93 (24.7%) were male and 265 (65.0%) were female. Of the respondents with a negative BID score, 283 (75.3%) were male and 143 (35.0%) were female. The results for BID vs. media exposure were similar in both high and low peer pressure groups. Low media exposure meant positive BID scores and vice versa in both groups (p < 0.0001) showing a statistically significant association between high media exposure and negative body image dissatisfaction. Finally, we looked at the association between gender and image dissatisfaction. Again a statistically significant association was found between positive body image dissatisfaction and female gender and negative body image dissatisfaction and male gender (p < 0.0001).</p> <p>Conclusions</p> <p>Our study confirmed the tendency of the media to have an overall negative effect on individuals' body image. A striking feature of our study, however, was the finding that negative body image dissatisfaction was found to be more prevalent in males as compared to females. Likewise, positive BID scores were more prevalent amongst females.</p

    Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury

    Get PDF
    Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis

    Purinergic signalling and immune cells

    Get PDF
    This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells

    Corrosion of a cobalt-chromium-molybdenum orthopaedic implant

    No full text

    RNA-Seq Meta-analysis identifies genes in skeletal muscle associated with gain and intake across a multi-season study of crossbred beef steers

    No full text
    Abstract Background Feed intake and body weight gain are economically important inputs and outputs of beef production systems. The purpose of this study was to discover differentially expressed genes that will be robust for feed intake and gain across a large segment of the cattle industry. Transcriptomic studies often suffer from issues with reproducibility and cross-validation. One way to improve reproducibility is by integrating multiple datasets via meta-analysis. RNA sequencing (RNA-Seq) was performed on longissimus dorsi muscle from 80 steers (5 cohorts, each with 16 animals) selected from the outside fringe of a bivariate gain and feed intake distribution to understand the genes and pathways involved in feed efficiency. In each cohort, 16 steers were selected from one of four gain and feed intake phenotypes (n = 4 per phenotype) in a 2 × 2 factorial arrangement with gain and feed intake as main effect variables. Each cohort was analyzed as a single experiment using a generalized linear model and results from the 5 cohort analyses were combined in a meta-analysis to identify differentially expressed genes (DEG) across the cohorts. Results A total of 51 genes were differentially expressed for the main effect of gain, 109 genes for the intake main effect, and 11 genes for the gain x intake interaction (Pcorrected < 0.05). A jackknife sensitivity analysis showed that, in general, the meta-analysis produced robust DEGs for the two main effects and their interaction. Pathways identified from over-represented genes included mitochondrial energy production and oxidative stress pathways for the main effect of gain due to DEG including GPD1, NDUFA6, UQCRQ, ACTC1, and MGST3. For intake, metabolic pathways including amino acid biosynthesis and degradation were identified, and for the interaction analysis the pathways identified included GADD45, pyridoxal 5’phosphate salvage, and caveolar mediated endocytosis signaling. Conclusions Variation among DEG identified by cohort suggests that environment and breed may play large roles in the expression of genes associated with feed efficiency in the muscle of beef cattle. Meta-analyses of transcriptome data from groups of animals over multiple cohorts may be necessary to elucidate the genetics contributing these types of biological phenotypes
    corecore