716 research outputs found

    Imaging Pauli repulsion in scanning tunneling microscopy

    Get PDF
    A scanning tunneling microscope (STM) has been equipped with a nanoscale force sensor and signal transducer composed of a single D2 molecule that is confined in the STM junction. The uncalibrated sensor is used to obtain ultra-high geometric image resolution of a complex organic molecule adsorbed on a noble metal surface. By means of conductance-distance spectroscopy and corresponding density functional calculations the mechanism of the sensor/transducer is identified. It probes the short-range Pauli repulsion and converts this signal into variations of the junction conductance.Comment: 4 pages, 4 figures, accepted to Phys. Rev. Let

    Electrical transport through a mechanically gated molecular wire

    Get PDF
    A surface-adsorbed molecule is contacted with the tip of a scanning tunneling microscope (STM) at a pre-defined atom. On tip retraction, the molecule is peeled off the surface. During this experiment, a two-dimensional differential conductance map is measured on the plane spanned by the bias voltage and the tip-surface distance. The conductance map demonstrates that tip retraction leads to mechanical gating of the molecular wire in the STM junction. The experiments are compared with a detailed ab initio simulation. We find that density functional theory (DFT) in the local density approximation (LDA) describes the tip-molecule contact formation and the geometry of the molecular junction throughout the peeling process with predictive power. However, a DFT-LDA-based transport simulation following the non-equilibrium Green's functions (NEGF) formalism fails to describe the behavior of the differential conductance as found in experiment. Further analysis reveals that this failure is due to the mean-field description of electron correlation in the local density approximation. The results presented here are expected to be of general validity and show that, for a wide range of common wire configurations, simulations which go beyond the mean-field level are required to accurately describe current conduction through molecules. Finally, the results of the present study illustrate that well-controlled experiments and concurrent ab initio transport simulations that systematically sample a large configuration space of molecule-electrode couplings allow the unambiguous identification of correlation signatures in experiment.Comment: 31 pages, 10 figure

    Quasiparticle energies for large molecules: a tight-binding GW approach

    Full text link
    We present a tight-binding based GW approach for the calculation of quasiparticle energy levels in confined systems such as molecules. Key quantities in the GW formalism like the microscopic dielectric function or the screened Coulomb interaction are expressed in a minimal basis of spherically averaged atomic orbitals. All necessary integrals are either precalculated or approximated without resorting to empirical data. The method is validated against first principles results for benzene and anthracene, where good agreement is found for levels close to the frontier orbitals. Further, the size dependence of the quasiparticle gap is studied for conformers of the polyacenes (C4n+2H2n+4C_{4n+2}H_{2n+4}) up to n = 30.Comment: 10 pages, 5 eps figures submitted to Phys. Rev.

    Structural relaxations in electronically excited poly(para-phenylene)

    Full text link
    Structural relaxations in electronically excited poly(para-phenylene) are studied using many-body perturbation theory and density-functional-theory methods. A sophisticated description of the electron-hole interaction is required to describe the energies of the excitonic states, but we show that the structural relaxations associated with exciton formation can be obtained quite accurately within a constrained density-functional-theory approach. We find that the structural relaxations in the low-energy excitonic states extend over about 8 monomers, leading to an energy reduction of 0.22 eV and a Stokes shift of 0.40 eV.Comment: 4 pages, 3 figure

    Dynamical bi-stability of single-molecule junctions: A combined experimental/theoretical study of PTCDA on Ag(111)

    Get PDF
    The dynamics of a molecular junction consisting of a PTCDA molecule between the tip of a scanning tunneling microscope and a Ag(111) surface have been investigated experimentally and theoretically. Repeated switching of a PTCDA molecule between two conductance states is studied by low-temperature scanning tunneling microscopy for the first time, and is found to be dependent on the tip-substrate distance and the applied bias. Using a minimal model Hamiltonian approach combined with density-functional calculations, the switching is shown to be related to the scattering of electrons tunneling through the junction, which progressively excite the relevant chemical bond. Depending on the direction in which the molecule switches, different molecular orbitals are shown to dominate the transport and thus the vibrational heating process. This in turn can dramatically affect the switching rate, leading to non-monotonic behavior with respect to bias under certain conditions. In this work, rather than simply assuming a constant density of states as in previous works, it was modeled by Lorentzians. This allows for the successful description of this non-monotonic behavior of the switching rate, thus demonstrating the importance of modeling the density of states realistically.Comment: 20 pages, 6 figures, 1 tabl

    Doppler Shift in Andreev Reflection from a Moving Superconducting Condensate in Nb/InAs Josephson Junctions

    Get PDF
    We study narrow ballistic Josephson weak links in a InAs quantum wells contacted by Nb electrodes and find a dramatic magnetic-field suppression of the Andreev reflection amplitude, which occurs even for in-plane field orientation with essentially no magnetic flux through the junction. Our observations demonstrate the presence of a Doppler shift in the energy of the Andreev levels, which results from diamagnetic screening currents in the hybrid Nb/InAs-banks. The data for conductance, excess and critical currents can be consistently explained in terms of the sample geometry and the McMillan energy, characterizing the transparency of the Nb/InAs-interface.Comment: 4 pages, 5 figures, title modifie

    Excitonic Effects on Optical Absorption Spectra of Doped Graphene

    Full text link
    We have performed first-principles calculations to study optical absorption spectra of doped graphene with many-electron effects included. Both self-energy corrections and electron-hole interactions are reduced due to the enhanced screening in doped graphene. However, self-energy corrections and excitonic effects nearly cancel each other, making the prominent optical absorption peak fixed around 4.5 eV under different doping conditions. On the other hand, an unexpected increase of the optical absorbance is observed within the infrared and visible-light frequency regime (1 ~ 3 eV). Our analysis shows that a combining effect from the band filling and electron-hole interactions results in such an enhanced excitonic effect on the optical absorption. These unique variations of the optical absorption of doped graphene are of importance to understand relevant experiments and design optoelectronic applications.Comment: 15 pages, 5 figures; Nano Lett., Article ASAP (2011

    Optical absorption spectra of finite systems from a conserving Bethe-Salpeter equation approach

    Full text link
    We present a method for computing optical absorption spectra by means of a Bethe-Salpeter equation approach, which is based on a conserving linear response calculation for electron-hole coherences in the presence of an external electromagnetic field. This procedure allows, in principle, for the determination of the electron-hole correlation function self-consistently with the corresponding single-particle Green function. We analyze the general approach for a "one-shot" calculation of the photoabsorption cross section of finite systems, and discuss the importance of scattering and dephasing contributions in this approach. We apply the method to the closed-shell clusters Na_4, Na^+_9 and Na^+_(21), treating one active electron per Na atom.Comment: 9 pages, 3 figure

    Molecular geometry optimization with a genetic algorithm

    Full text link
    We present a method for reliably determining the lowest energy structure of an atomic cluster in an arbitrary model potential. The method is based on a genetic algorithm, which operates on a population of candidate structures to produce new candidates with lower energies. Our method dramatically outperforms simulated annealing, which we demonstrate by applying the genetic algorithm to a tight-binding model potential for carbon. With this potential, the algorithm efficiently finds fullerene cluster structures up to C60{\rm C}_{60} starting from random atomic coordinates.Comment: 4 pages REVTeX 3.0 plus 3 postscript figures; to appear in Physical Review Letters. Additional information available under "genetic algorithms" at http://www.public.iastate.edu/~deaven

    Ab-initio calculation of the electronic and optical excitations in polythiophene: effects of intra- and interchain screening

    Get PDF
    We present an calculation of the electronic and optical excitations of an isolated polythiophene chain as well as of bulk polythiophene. We use the GW approximation for the electronic self-energy and include excitonic effects by solving the electron-hole Bethe-Salpeter equation. The inclusion of interchain screening in the case of bulk polythiophene drastically reduces both the quasi-particle band gap and the exciton binding energies, but the optical gap is hardly affected. This finding is relevant for conjugated polymers in general.Comment: 4 pages, 1 figur
    corecore