19 research outputs found

    Estimating Contact Process Saturation in Sylvatic Transmission of Trypanosoma cruzi in the United States

    Get PDF
    Although it has been known for nearly a century that strains of Trypanosoma cruzi, the etiological agent for Chagas' disease, are enzootic in the southern U.S., much remains unknown about the dynamics of its transmission in the sylvatic cycles that maintain it, including the relative importance of different transmission routes. Mathematical models can fill in gaps where field and lab data are difficult to collect, but they need as inputs the values of certain key demographic and epidemiological quantities which parametrize the models. In particular, they determine whether saturation occurs in the contact processes that communicate the infection between the two populations. Concentrating on raccoons, opossums, and woodrats as hosts in Texas and the southeastern U.S., and the vectors Triatoma sanguisuga and Triatoma gerstaeckeri, we use an exhaustive literature review to derive estimates for fundamental parameters, and use simple mathematical models to illustrate a method for estimating infection rates indirectly based on prevalence data. Results are used to draw conclusions about saturation and which population density drives each of the two contact-based infection processes (stercorarian/bloodborne and oral). Analysis suggests that the vector feeding process associated with stercorarian transmission to hosts and bloodborne transmission to vectors is limited by the population density of vectors when dealing with woodrats, but by that of hosts when dealing with raccoons and opossums, while the predation of hosts on vectors which drives oral transmission to hosts is limited by the population density of hosts. Confidence in these conclusions is limited by a severe paucity of data underlying associated parameter estimates, but the approaches developed here can also be applied to the study of other vector-borne infections

    Modeling the Stochastic Dynamics of Influenza Epidemics with Vaccination Control, and the Maximum Likelihood Estimation of Model Parameters

    No full text
    This study presents a family of stochastic models for the dynamics of influenza in a closed human population. We consider treatment for the disease in the form of vaccination and incorporate the periods of effectiveness of the vaccine and infectiousness for the individuals in the population. Our model is a SVIR model, with trinomial transition probabilities, where all individuals who recover from the disease acquire permanent natural immunity against the strain of the disease. A special SVIR model in the stochastic family based on correlated vaccination and infection probabilities at any instant is presented. The methods of maximum likelihood and expectation–maximization algorithm are applied to find estimates for the parameters of the chain. Moreover, estimators for some special epidemiological control parameters, such as the basic reproduction number, are computed. A numerical simulation example is presented to find the MLE of the parameters of the model
    corecore