10,015 research outputs found

    An immune system based genetic algorithm using permutation-based dualism for dynamic traveling salesman problems

    Get PDF
    Copyright @ Springer-Verlag Berlin Heidelberg 2009.In recent years, optimization in dynamic environments has attracted a growing interest from the genetic algorithm community due to the importance and practicability in real world applications. This paper proposes a new genetic algorithm, based on the inspiration from biological immune systems, to address dynamic traveling salesman problems. Within the proposed algorithm, a permutation-based dualism is introduced in the course of clone process to promote the population diversity. In addition, a memory-based vaccination scheme is presented to further improve its tracking ability in dynamic environments. The experimental results show that the proposed diversification and memory enhancement methods can greatly improve the adaptability of genetic algorithms for dynamic traveling salesman problems.This work was supported by the Key Program of National Natural Science Foundation (NNSF) of China under Grant No. 70431003 and Grant No. 70671020, the Science Fund for Creative Research Group of NNSF of China under GrantNo. 60521003, the National Science and Technology Support Plan of China under Grant No. 2006BAH02A09 and the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant No. EP/E060722/1

    Approximate perturbed direct homotopy reduction method: infinite series reductions to two perturbed mKdV equations

    Full text link
    An approximate perturbed direct homotopy reduction method is proposed and applied to two perturbed modified Korteweg-de Vries (mKdV) equations with fourth order dispersion and second order dissipation. The similarity reduction equations are derived to arbitrary orders. The method is valid not only for single soliton solution but also for the Painlev\'e II waves and periodic waves expressed by Jacobi elliptic functions for both fourth order dispersion and second order dissipation. The method is valid also for strong perturbations.Comment: 8 pages, 1 figur

    Surgery remains the best option for the management of pain in patients with chronic pancreatitis: a systematic review and meta-analysis

    Get PDF
    Controversy related to endoscopic or surgical management of pain in patients with chronic pancreatitis remains. Despite improvement in endoscopic treatments, surgery remains the best option for pain management in these patients

    Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution

    Get PDF
    Nonlocal correlations, a longstanding foundational topic in quantum information, have recently found application as a resource for cryptographic tasks where not all devices are trusted, for example in settings with a highly secure central hub, such as a bank or government department, and less secure satellite stations which are inherently more vulnerable to hardware "hacking" attacks. The asymmetric phenomena of Einstein-Podolsky-Rosen steering plays a key role in one-sided device-independent quantum key distribution (1sDI-QKD) protocols. In the context of continuous-variable (CV) QKD schemes utilizing Gaussian states and measurements, we identify all protocols that can be 1sDI and their maximum loss tolerance. Surprisingly, this includes a protocol that uses only coherent states. We also establish a direct link between the relevant EPR steering inequality and the secret key rate, further strengthening the relationship between these asymmetric notions of nonlocality and device independence. We experimentally implement both entanglement-based and coherent-state protocols, and measure the correlations necessary for 1sDI key distribution up to an applied loss equivalent to 7.5 km and 3.5 km of optical fiber transmission respectively. We also engage in detailed modelling to understand the limits of our current experiment and the potential for further improvements. The new protocols we uncover apply the cheap and efficient hardware of CVQKD systems in a significantly more secure setting.Comment: Addition of experimental results and (several) new author

    Density of States for a Specified Correlation Function and the Energy Landscape

    Full text link
    The degeneracy of two-phase disordered microstructures consistent with a specified correlation function is analyzed by mapping it to a ground-state degeneracy. We determine for the first time the associated density of states via a Monte Carlo algorithm. Our results are described in terms of the roughness of the energy landscape, defined on a hypercubic configuration space. The use of a Hamming distance in this space enables us to define a roughness metric, which is calculated from the correlation function alone and related quantitatively to the structural degeneracy. This relation is validated for a wide variety of disordered systems.Comment: Accepted for publication in Physical Review Letter
    corecore