47,338 research outputs found
Recommended from our members
Nonformal education for sustainable development: A Bangladeshi perspective
Sustainable development means ‘development that meets the needs of the present without compromising the ability of future generations to meet their needs’ (WCED, 1987:43). Meanwhile, any education worth the name is a life-long process for the betterment of human well-being. The social purposes of education are located in the long term, and it is right therefore that education should be oriented towards the construction and maintenance of a sustainable future.
However, many children in developing countries get very little education. They have little chance to attend even low-quality primary schools, and dropout and failure rates are alarming; many leave semi-literate, soon to relapse into illiteracy, with disastrous consequences for their participation as individuals in the creation of a sustainable world. Moreover, the majority of those who are at school experience a traditional, formal education paradigm, aimed primarily at selecting and building human capital for economic growth. This paradigm is seen to be increasingly at odds with the concept of education for sustainability.
Since the 1960s, nonformal education has comprised a wide spectrum of educational and training activities organised outside the formal school system. Innovative learning methods are aimed at the development of practical skills, including matters of health, sanitation, literacy, to be applied in real life situations. As an alternative approach to basic education, the nonformal sector as a whole thus increases pressure for change in the wider education system.
Drawing on a three-year empirical study of young people at the point of transition between the nonformal and formal sectors of schooling in Bangladesh, this paper will develop a framework for analysing how the nonformal education paradigm could usefully and realistically increase practice for sustainability in the formal system
Recommended from our members
A heterologous expression system for bovine lens transmembrane main intrinsic protein (MIP) in Nicotiana tabacum plants
We have developed a heterologous expression system for transmembrane lens main intrinsic protein (MIP) in Nicotiana tabacum plant tissue. A native bovine MIP26 amplicon was subcloned into an expression cassette under the control of a constitutive Cauliflower Mosaic Virus promoter, also containing a neomycin phosphotransferase operon. This cassette was transformed into Agrobacterium tumefaciens by triparental mating and used to infect plant tissue grown in culture. Recombinant plants were selected by their ability to grow and root on kanamycin-containing media. The presence of MIP in the plant tissues was confirmed by PCR, RT-PCR and immunohistochemistry. A number of benefits of this system for the study of MIP will be discussed, and also its application as a tool for the study of heterologously expressed proteins in general
Adenosine to inosine editing by ADAR2 requires formation of a ternary complex on the GluR-B R/G site
RNA editing by members of the ADAR (adenosine deaminase that acts on RNA) enzyme family involves hydrolytic deamination of adenosine to inosine within the context of a double-stranded pre-mRNA substrate. Editing of the human GluR-B transcript is catalyzed by, the enzyme ADAR2 at the Q/R and R/G sites. We have established a minimal RNA substrate for editing based on the RIG site and have characterized the interaction of ADAR2 with this RNA by gel shift, kinetic, and cross-linking analyses. Gel shift analysis revealed that two complexes are formed on the RNA as protein concentration is increased; the ADAR monomers can be crosslinked to one another in an RNA-dependent fashion. We performed a detailed kinetic study of the editing reaction; the data from this study are consistent with a reaction scheme in which formation of an ADAR2.RNA ternary complex is required for efficient RNA editing and in which formation of this complex is rate determining. These observations suggest that RNA adenosine deaminases function as homodimers on their RNA substrates and may partially explain regulation of RNA editing in these systems
Functional programming framework for GRworkbench
The software tool GRworkbench is an ongoing project in visual, numerical
General Relativity at The Australian National University. Recently, the
numerical differential geometric engine of GRworkbench has been rewritten using
functional programming techniques. By allowing functions to be directly
represented as program variables in C++ code, the functional framework enables
the mathematical formalism of Differential Geometry to be more closely
reflected in GRworkbench . The powerful technique of `automatic
differentiation' has replaced numerical differentiation of the metric
components, resulting in more accurate derivatives and an order-of-magnitude
performance increase for operations relying on differentiation
Advancing imaging technologies for patients with spinal pain : with a focus on whiplash injury
Background: Radiological observations of soft-tissue changes that may relate to clinical symptoms in patients with traumatic and non-traumatic spinal disorders are highly controversial. Studies are often of poor quality and findings are inconsistent. A plethora of evidence suggests some pathoanatomical findings from traditional imaging applications are common in asymptomatic participants across the life span, which further questions the diagnostic, prognostic, and theranostic value of traditional imaging. Although we do not dispute the limited evidence for the clinical importance of most imaging findings, we contend that the disparate findings across studies may in part be due to limitations in the approaches used in assessment and analysis of imaging findings.
Purpose: This clinical commentary aimed to (1) briefly detail available imaging guidelines, (2) detail research-based evidence around the clinical use of findings from advanced, but available, imaging applications (eg, fat and water magnetic resonance imaging and magnetization transfer imaging), and (3) introduce how evolving imaging technologies may improve our mechanistic understanding of pain and disability, leading to improved treatments and outcomes.
Study Design/Setting: A non-systematic review of the literature is carried out.
Methods: A narrative summary (including studies from the authors' own work in whiplash injuries) of the available literature is provided.
Results: An emerging body of evidence suggests that the combination of existing imaging sequences or the use of developing imaging technologies in tandem with a good clinical assessment of modifiable risk factors may provide important diagnostic information toward the exploration and development of more informed and effective treatment options for some patients with traumatic neck pain.
Conclusions: Advancing imaging technologies may help to explain the seemingly disconnected spectrum of biopsychosocial signs and symptoms of traumatic neck pain
Optically induced spin to charge transduction in donor spin read-out
The proposed read-out configuration D+D- for the Kane Si:P
architecture[Nature 393, 133 (1998)] depends on spin-dependent electron
tunneling between donors, induced adiabatically by surface gates. However,
previous work has shown that since the doubly occupied donor state is so
shallow the dwell-time of the read-out state is less than the required time for
measurement using a single electron transistor (SET). We propose and analyse
single-spin read-out using optically induced spin to charge transduction, and
show that the top gate biases, required for qubit selection, are significantly
less than those demanded by the Kane scheme, thereby increasing the D+D-
lifetime. Implications for singlet-triplet discrimination for electron spin
qubits are also discussed.Comment: 8 pages, 10 figures; added reference, corrected typ
- …