1,829 research outputs found

    Acoustic characterization of crack damage evolution in sandstone deformed under conventional and true triaxial loading

    Get PDF
    We thank the Associate Editor, Michelle Cooke, and the reviewers, Ze'ev Reches and Yves GuĂ©guen, for useful comments which helped to improve the manuscript. We thank J.G. Van Munster for providing access to the true triaxial apparatus at KSEPL and for technical support during the experimental program. We thank R. Pricci for assistance with technical drawings of the apparatus. This work was partly funded by NERC award NE/N002938/1 and by a NERC Doctoral Studentship, which we gratefully acknowledge. Supporting data are included in a supporting information file; any additional data may be obtained from J.B. (e-mail: [email protected]).Peer reviewedPublisher PD

    Transforming learning of programming: A mentoring project

    Get PDF
    Programming is central to Computer Science and cognate disciplines, and poses early-learning challenges in problem-solving and coding. Since the recent past the School of Computer Science & Information Technology (RMIT University) has provided a student mentoring service to assist novice student programmers with their programming, indeed, to build up their confidence in programming. The service has received favourable feedback from students and, as an interesting aside, has had the added benefit of increasing mentors' confidence and improving mentors' communication skills. Mentors volunteer their services under a University leadership initiative, and are not paid to assist students. In light of such success, we secured a University action-research teaching and learning grant, to investigate aspects of the service delivered to date. While mentoring has been shown to be helpful for novice student programmers to learn and improve their programming, less recognised, but of equal importance, is the value to mentors through the skills and experience they gain. This paper reports early findings of a dual-purpose research investigation into the mentoring service. The research project seeks to discover ways to improve the mentoring service for novice student programmers, as well as to enhance a range of qualities in mentors

    Genetic evidence that SOST inhibits WNT signaling in the limb

    Get PDF
    AbstractSOST is a negative regulator of bone formation, and mutations in human SOST are responsible for sclerosteosis. In addition to high bone mass, sclerosteosis patients occasionally display hand defects, suggesting that SOST may function embryonically. Here we report that overexpression of SOST leads to loss of posterior structures of the zeugopod and autopod by perturbing anterior–posterior and proximal–distal signaling centers in the developing limb. Mutant mice that overexpress SOST in combination with Grem1 and Lrp6 mutations display more severe limb defects than single mutants alone, while Sost−/− significantly rescues the Lrp6−/− skeletal phenotype, signifying that SOST gain-of-function impairs limb patterning by inhibiting the WNT signaling through LRP5/6

    Glioma stem-like cells and metabolism:Potential for novel therapeutic strategies

    Get PDF
    Glioma stem-like cells (GSCs) were first described as a population which may in part be resistant to traditional chemotherapeutic therapies and responsible for tumour regrowth. Knowledge of the underlying metabolic complexity governing GSC growth and function may point to potential differences between GSCs and the tumour bulk which could be harnessed clinically. There is an increasing interest in the direct/indirect targeting or reprogramming of GSC metabolism as a potential novel therapeutic approach in the adjuvant or recurrent setting to help overcome resistance which may be mediated by GSCs. In this review we will discuss stem-like models, interaction between metabolism and GSCs, and potential current and future strategies for overcoming GSC resistance

    Signatures of chaotic and non-chaotic-like behaviour in a non-linear quantum oscillator through photon detection

    Get PDF
    The driven non-linear duffing osillator is a very good, and standard, example of a quantum mechanical system from which classical-like orbits can be recovered from unravellings of the master equation. In order to generated such trajectories in the phase space of this oscillator in this paper we use a the quantum jumps unravelling together with a suitable application of the correspondence principle. We analyse the measured readout by considering the power spectra of photon counts produced by the quantum jumps. Here we show that localisation of the wave packet from the measurement of the oscillator by the photon detector produces a concomitant structure in the power spectra of the measured output. Furthermore, we demonstrate that this spectral analysis can be used to distinguish between different modes of the underlying dynamics of the oscillator.Comment: 7 pages, 6 figure

    Caesium on Si(100) Studied by Biassed Secondary Electron Microscopy

    Get PDF
    An ultra-high vacuum scanning electron microscope (UHV-SEM) has been used to study sub-monolayers of Cs on Si(100) surface. Cs adsorption on the surface causes a considerable change in the work function. Coverages below 1/2 monolayer (ML) have been estimated by correlating the work function changes with the secondary electron (SE) signal. It has been found that this signal is sensitive down to ~ 0.005 ML when the sample is biassed to a few hundred volts. Electron trajectories from a biassed sample have been simulated for electrons originating from different areas with different work functions across the sample. This indicates that variations in coverage can be determined by secondary electron imaging provided these coverages are less than 1/2 ML. The diffusion of Cs (\u3c 1/2 ML) above room temperature has been studied using the biassed-SE imaging technique. Observed diffusion profiles have unusual features including two linear regions. These can be explained by a model which contains two competing adsorption sites, and includes blocking of the diffusion paths by other Cs atoms

    Homogeneous nucleation of colloidal melts under the influence of shearing fields

    Full text link
    We study the effect of shear flow on homogeneous crystal nucleation, using Brownian Dynamics simulations in combination with an umbrella sampling like technique. The symmetry breaking due to shear results in anisotropic radial distribution functions. The homogeneous shear rate suppresses crystal nucleation and leads to an increase of the size of the critical nucleus. These observations can be described by a simple, phenomenological extension of classical nucleation theory. In addition, we find that nuclei have a preferential orientation with respect to the direction of shear. On average the longest dimension of a nucleus is along the vorticity direction, while the shortest dimension is preferably perpendicular to that and slightly tilted with respect to the gradient direction.Comment: 10 pages, 8 figures, Submitted to J. Phys.: Condens. Matte

    Accelerated gene evolution and subfunctionalization in the pseudotetraploid frog Xenopus laevis

    Get PDF
    Ancient whole genome duplications have been implicated in the vertebrate and teleost radiations, and in the emergence of diverse angiosperm lineages, but the evolutionary response to such a perturbation is still poorly understood. The African clawed frog Xenopus laevis experienced a relatively recent tetraploidization {approx} 40 million years ago. Analysis of the considerable amount of EST sequence available for this species together with the genome sequence of the related diploid Xenopus tropicalis provides a unique opportunity to study the genomic response to whole genome duplication
    • 

    corecore