4,196 research outputs found

    Exciton Regeneration at Polymeric Semiconductor Heterojunctions

    Full text link
    Control of the band-edge offsets at heterojunctions between organic semiconductors allows efficient operation of either photovoltaic or light-emitting diodes. We investigate systems where the exciton is marginally stable against charge separation, and show via E-field-dependent time-resolved photoluminescence spectroscopy that excitons that have undergone charge separation at a heterojunction can be efficiently regenerated. This is because the charge transfer produces a geminate electron-hole pair (separation 2.2-3.1nm) which may collapse into an exciplex and then endothermically (E=100-200meV) back-transfer towards the exciton.Comment: 10 pages, 4 figures. Manuscript in press in Phys. Rev. Let

    The geology and petrogenesis of the southern closepet granite

    Get PDF
    The Archaean Closepet Granite is a polyphase body intruding the Peninsular Gneiss Complex and the associated supracrustal rocks. The granite out-crop runs for nearly 500 km with an approximate width of 20 to 25 km and cut across the regional metamorphic structure passing from granulite facies in the South and green schist facies in the north. In the amphibolite-granulite facies transition zone the granite is intimately mixed with migmatites and charnockite. Field observations suggests that anatexis of Peninsular gneisses led to the formation of granite melt, and there is a space relationship between migmatite formation, charnockite development and production and emplacement of granite magma. Based on texture and cross cutting relationships four major granite phases are recognized: (1) Pyroxene bearing dark grey granite; (2) Porphyritec granite; (3) Equigranular grey granite; and (4) Equigranular pink granite. The granite is medium to coarse grained and exhibit hypidiomorphic granular to porphyritic texture. The modal composition varies from granite granodiorite to quartz monzonite. Geochemical variation of the granite suite is consistent with either fractional crystallization or partial melting, but in both the cases biotite plus feldspar must be involved as fractionating or residual phases during melting to account trace element chemistry. The trace element data has been plotted on discriminant diagrams, where majority of samples plot in volcanic arc and within plate, tectonic environments. The granite show distinct REE patterns with variable total REE content. The REE patterns and overall abundances suggests that the granite suite represents a product of partial melting of crustal source in which fractional crystallization operated in a limited number of cases

    FUSE Observations of the Dwarf Novae UU Aql, BV Cen, and CH UMa in Quiescence

    Full text link
    We report on FUSE spectra of three U Gem-type, long period, dwarf novae, UU Aql, BV Cen and CH UMa taken during their quiescence intervals. We discuss the line identifications in their spectra and attempt to characterize the source(s) of their FUV flux distribution. Archival IUE spectrum of CH UMa and BV Cen in quiescence were identified as having a matching flux level with the FUSE spectra and these were combined with each FUSE spectrum to broaden the wavelength coverage and further constrain model fits. Multi-component synthetic spectral fits from our model grids, consisting of single temperature white dwarfs, two-temperature white dwarfs, accretion disks and white dwarfs plus accretion disks, were applied to the FUSE spectra alone and to the combined FUSE + IUE spectra. We present the results of our model analyses and their implications.Comment: accepted in AJ, 26 pages, 6 tables, 8 figures (5 color, 3 b/w

    New age data on the geological evolution of Southern India

    Get PDF
    The Peninsular Gneisses of Southern India developed over a period of several hundred Ma in the middle-to-late Archaean. Gneisses in the Gorur-Hassan area of southern Karnataka are the oldest recognized constituents: Beckinsale et al. reported a preliminary Rb-Sr whole-rock isochron age of 33558 + or - 66 Ma, but further Rb-Sr and Pb/Pb whole-rock isochron determinations indicate a slightly younger, though more precise age of ca 3305 Ma (R. D. Beckinsale, Pers. Comm.). It is well established that the Peninsular Gneisses constitute basement on which the Dharwar schist belts were deposited. Well-documented exposures of unconformities, with basal quartz pebble conglomerates of the Dharwar Supergroup overlying Peninsular Gneisses, have been reported from the Chikmagalur and Chitradurga areas, and basement gneisses in these two areas have been dated by Rb-Sr and Pb/Pb whole-rock isochron methods at ca 3150 Ma and ca 3000 Ma respectively. Dharwar supracrustal rocks of the Chitradurga schist belt are intruded by the Chitradurga Granite, dated by a Pb/Pb whole-rock isochron at 2605 + or - 18 Ma. These results indicate that the Dharwar Supergroup in the Chitradurga belt was deposited between 3000 Ma and 2600 Ma

    Transport Properties of Highly Aligned Polymer Light-Emitting-Diodes

    Full text link
    We investigate hole transport in polymer light-emitting-diodes in which the emissive layer is made of liquid-crystalline polymer chains aligned perpendicular to the direction of transport. Calculations of the current as a function of time via a random-walk model show excellent qualitative agreement with experiments conducted on electroluminescent polyfluorene demonstrating non-dispersive hole transport. The current exhibits a constant plateau as the charge carriers move with a time-independent drift velocity, followed by a long tail when they reach the collecting electrode. Variation of the parameters within the model allows the investigation of the transition from non-dispersive to dispersive transport in highly aligned polymers. It turns out that large inter-chain hopping is required for non-dispersive hole transport and that structural disorder obstructs the propagation of holes through the polymer film.Comment: 4 pages, 5 figure

    Correlation of the Quasi-Periodic Oscillation Frequencies of White Dwarf, Neutron Star, and Black Hole Binaries

    Get PDF
    Using data obtained in 1994 June/July with the Extreme Ultraviolet Explorer deep survey photometer and in 2001 January with the Chandra X-ray Observatory Low Energy Transmission Grating Spectrograph, we investigate the extreme-ultraviolet (EUV) and soft X-ray oscillations of the dwarf nova SS Cyg in outburst. We find quasi-periodic oscillations (QPOs) at nu_0 ~ 0.012 Hz and nu_1 ~ 0.13 Hz in the EUV flux and at nu_0 ~ 0.0090 Hz, nu_1 ~ 0.11 Hz, and possibly nu_2 ~ nu_0 + nu_1 ~ 0.12 Hz in the soft X-ray flux. These data, combined with the optical data of Woudt & Warner for VW Hyi, extend the Psaltis, Belloni, & van der Klis nu_high-nu_low correlation for neutron star and black hole low-mass X-ray binaries (LMXBs) nearly two orders of magnitude in frequency, with nu_low ~ 0.08 nu_high. This correlation identifies the high-frequency quasi-coherent oscillations (so-called ``dwarf nova oscillations'') of cataclysmic variables (CVs) with the kilohertz QPOs of LMXBs, and the low-frequency QPOs of CVs with the horizontal branch oscillations (or the broad noise component identified as such) of LMXBs. Assuming that the same mechanisms produce the QPOs in white dwarf, neutron star, and black hole binaries, we find that the data exclude the relativistic precession model and the magnetospheric and sonic-point beat-frequency models (as well as any model requiring the presence or absence of a stellar surface or magnetic field); more promising are models that interpret QPOs as manifestations of disk accretion onto any low-magnetic field compact object.Comment: 15 pages including 4 encapsulated postscript figures; LaTeX format, uses aastex.cls; accepted on 2002 July 23 for publication in The Astrophysical Journa

    Spectroscopy of Seven Cataclysmic Variables with Periods Above Five Hours

    Full text link
    We present spectroscopy of seven cataclysmic variable stars with orbital periods P(orb) greater than 5 hours, all but one of which are known to be dwarf novae. Using radial velocity measurements we improve on previous orbital period determinations, or derive periods for the first time. The stars and their periods are TT Crt, 0.2683522(5) d; EZ Del, 0.2234(5) d; LL Lyr, 0.249069(4) d; UY Pup, 0.479269(7) d; RY Ser, 0.3009(4) d; CH UMa, 0.3431843(6) d; and SDSS J081321+452809, 0.2890(4) d. For each of the systems we detect the spectrum of the secondary star, estimate its spectral type, and derive a distance based on the surface brightness and Roche lobe constraints. In five systems we also measure the radial velocity curve of the secondary star, estimate orbital inclinations, and where possible estimate distances based on the MV(max) vs.P(orb) relation found by Warner. In concordance with previous studies, we find that all the secondary stars have, to varying degrees, cooler spectral types than would be expected if they were on the main sequence at the measured orbital period.Comment: 25 pages, 2 figures, accepted for Publications of the Astronomical Society of the Pacifi

    The Nature of the Secondary Star in the Black Hole X-Ray Transient V616 Mon (=A0620-00)

    Full text link
    We have used NIRSPEC on Keck II to obtain KK-band spectroscopy of the low mass X-ray binary V616 Mon (= A0620-00). V616 Mon is the proto-typical soft x-ray transient containing a black hole primary. As such it is important to constrain the masses of the binary components. The modeling of the infrared observations of ellipsoidal variations in this system lead to a derived mass of 11.0 M_{\sun} for the black hole. The validity of this derivation has been called into question due to the possiblity that the secondary star's spectral energy distribution is contaminated by accretion disk emission (acting to dilute the variations). Our new KK-band spectrum of V616 Mon reveals a late-type K dwarf secondary star, but one that has very weak 12^{\rm 12}CO absorption features. Comparison of V616 Mon with SS Cyg leads us to estimate that the accretion disk supplies only a small amount of KK-band flux, and the ellipsoidal variations are not seriously contaminated. If true, the derived orbital inclination of V616 Mon is not greatly altered, and the mass of the black hole remains large. A preliminary stellar atmosphere model for the KK-band spectrum of V616 Mon reveals that the carbon abundance is approximately 50% of the solar value. We conclude that the secondary star in V616 Mon has either suffered serious contamination from the accretion of supernova ejecta that created the black hole primary, or it is the stripped remains of a formerly more massive secondary star, one in which the CNO cycle had been active.Comment: 20 pages, 5 figure

    On the Correlated X-ray and Optical Evolution of SS Cygni

    Full text link
    We have analyzed the variability and spectral evolution of the prototype dwarf nova system SS Cygni using RXTE data and AAVSO observations. A series of pointed RXTE/PCA observations allow us to trace the evolution of the X-ray spectrum of SS Cygni in unprecedented detail, while 6 years of optical AAVSO and RXTE/ASM light curves show long-term patterns. Employing a technique in which we stack the X-ray flux over multiple outbursts, phased according to the optical light curve, we investigate the outburst morphology. We find that the 3-12 keV X-ray flux is suppressed during optical outbursts, a behavior seen previously, but only in a handful of cycles. The several outbursts of SS Cygni observed with the more sensitive RXTE/PCA also show a depression of the X-rays during optical outburst. We quantify the time lags between the optical and X-ray outbursts, and the timescales of the X-ray recovery from outburst. The optical light curve of SS Cygni exhibits brief anomalous outbursts. During these events the hard X-rays and optical flux increase together. The long-term data suggest that the X-rays decline between outburst. Our results are in general agreement with modified disk instability models (DIM), which invoke a two-component accretion flow consisting of a cool optically thick accretion disk truncated at an inner radius, and a quasi-spherical hot corona-like flow extending to the surface of the white dwarf. We discuss our results in the framework of one such model, involving the evaporation of the inner part of the optically thick accretion disk, proposed by Meyer & Meyer-Hofmeister (1994).Comment: 24 pages, 8 figures, 2 tables, accepted for publication in Ap

    Weak charge form factor and radius of 208Pb through parity violation in electron scattering

    Get PDF
    We use distorted wave electron scattering calculations to extract the weak charge form factor F_W(q), the weak charge radius R_W, and the point neutron radius R_n, of 208Pb from the PREX parity violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer q=0.475 fm1^{-1}. We find F_W(q) =0.204 \pm 0.028 (exp) \pm 0.001 (model). We use the Helm model to infer the weak radius from F_W(q). We find R_W= 5.826 \pm 0.181 (exp) \pm 0.027 (model) fm. Here the exp error includes PREX statistical and systematic errors, while the model error describes the uncertainty in R_W from uncertainties in the surface thickness \sigma of the weak charge density. The weak radius is larger than the charge radius, implying a "weak charge skin" where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius R_n=5.751 \pm 0.175 (exp) \pm 0.026 (model) \pm 0.005 (strange) fm$, from R_W. Here there is only a very small error (strange) from possible strange quark contributions. We find R_n to be slightly smaller than R_W because of the nucleon's size. Finally, we find a neutron skin thickness of R_n-R_p=0.302\pm 0.175 (exp) \pm 0.026 (model) \pm 0.005 (strange) fm, where R_p is the point proton radius.Comment: 5 pages, 1 figure, published in Phys Rev. C. Only one change in this version: we have added one author, also to metadat
    corecore