501 research outputs found

    Spitzer IRAC Imaging of the Relativistic Jet from Superluminal Quasar PKS 0637-752

    Full text link
    Emission from the relativistic jet located at hundreds of kpc from the core of the superluminal quasar PKS 0637-752 was detected at 3.6 and 5.8 microns with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. The unprecedented sensitivity and arcsecond resolution of IRAC allows us to explore the mid-infrared emission from kiloparsec-scale quasar jets for the first time. The mid-infrared flux from the jet knots, when combined with radio and optical fluxes, confirms a synchrotron origin of the radio-to-optical emission and constrains very well the high energy end of the nonthermal electron distribution. Assuming the X-rays are produced in the relativistically moving knots via inverse Compton scattering of cosmic microwave background (CMB) radiation, the infrared observation puts constraints on the matter content of the quasar extended jet. Specifically, pure electron-positoron pair jet models are unfavorable based on the lack of an infrared bump associated with ``bulk Comptonization'' of CMB photons by an ultrarelativistic jet.Comment: 4 pages, 3 figures; accepted for publication in ApJ Letter

    An Infrared Study of the Large-scale Jet in Quasar PKS 1136-135

    Get PDF
    We present Spitzer IRAC imaging of the large-scale jet in the quasar PKS 1136-135 at wavelengths of 3.6 and 5.8 um, combined with previous VLA, HST, and Chandra observations. We clearly detect infrared emission from the jet, resulting in the most detailed multifrequency data among the jets in lobe-dominated quasars. The spectral energy distributions of the jet knots have significant variations along the jet, like the archetypal jet in 3C 273. The infrared measurements with IRAC are consistent with the previous idea that the jet has two spectral components, namely (1) the low-energy synchrotron spectrum extending from radio to infrared, and (2) the high-energy component responsible for the X-ray flux. The optical fluxes may be a mixture of the two components. We consider three radiation models for the high-energy component: inverse Compton scattering off CMB photons by radio-emitting electrons in a highly relativistic jet, synchrotron radiation by a second distinct electron population, and synchrotron radiation by ultra high energy protons. Each hypothesis leads to important insights into and constraints on particle acceleration in the jet, as well as the basic physical properties of the jet such as bulk velocity, transporting power, and particle contents.Comment: 9 pages, 5 figures (2 color figures), accepted for publication in ApJ; one typo in Table 1 is correcte

    Optical properties of metal nanoparticles with no center of inversion symmetry: observation of volume plasmons

    Full text link
    We present theoretical and experimental studies of the optical response of L-shaped silver nanoparticles. The scattering spectrum exhibits several plasmon resonances that depend sensitively on the polarization of the incident electromagnetic field. The physical origin of the resonances is traced to different plasmon phenomena. In particular, a high energy band with unusual properties is interpreted in terms of volume plasmon oscillations arising from the asymmetry of a nanoparticle.Comment: 14 pages, 5 figures. Physical Review B, 2007, accepte

    Shedding New Light on the 3C 273 Jet with the Spitzer Space Telescope

    Get PDF
    We have performed infrared imaging of the jet of the quasar 3C 273 at wavelengths 3.6 and 5.8 microns with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. When combined with the radio, optical and X-ray measurements, the IRAC photometry clearly shows that the optical emission is dominated by the high-energy component of the jet, not by the radio synchrotron component, as had been assumed to date. The high-energy component may be due to a second synchrotron component or to IC scattering of ambient photons. In the former case, we argue that the acceleration of protons exceeding 10^16 eV or possibly even to 10^19 eV would be taking place in the jet. In contrast, the IC model, into which highly relativistic Doppler beaming has to be incorporated, requires very low-energy electrons (~ 1 MeV). The present polarization data in the radio and optical would favor the former interpretation in the case of the 3C 273 jet. Sensitive and detailed measurements of optical polarization are important to establish the radiation mechanism responsible for the high-energy emission. The present study offers new clues as to the controversial origin of the X-ray emission seen in many quasar jets.Comment: 12 pages, 8 figures (2 color figures), accepted for publication in ApJ, color images are also available at http://www.astro.isas.jaxa.jp/~uchiyama/Site2/Spitzer_3C273.htm

    Radio Continuum Emission at 1.4 GHz from KISS Emission-Line Galaxies

    Full text link
    We have searched the Faint Images of the Radio Sky at Twenty centimeters (FIRST) and the NRAO VLA Sky Survey (NVSS) 1.4 GHz radio surveys for sources that are coincident with emission-line galaxy (ELG) candidates from the KPNO International Spectroscopic Survey (KISS). A total of 207 of the 2157 KISS ELGs (~10%) in the first two H-alpha-selected survey lists were found to possess radio detections in FIRST and/or NVSS. Follow-up spectra exist for all of the radio detections, allowing us to determine the activity type (star-forming vs. AGN) for the entire sample. We explore the properties of the radio-detected KISS galaxies in order to gain a better insight into the nature of radio-emitting galaxies in the local universe (z < 0.1). No dwarf galaxies were detected, despite the large numbers of low-luminosity galaxies present in KISS, suggesting that lower mass, lower luminosity objects do not possess strong galaxian-scale magnetic fields. Due to the selection technique used for KISS, our radio ELGs represent a quasi-volume-limited sample, which allows us to develop a clearer picture of the radio galaxy population at low redshift. Nearly 2/3rds of the KISS radio galaxies are starburst/star-forming galaxies, which is in stark contrast to the results of flux-limited radio surveys that are dominated by AGNs and elliptical galaxies (i.e., classic radio galaxies). While there are many AGNs among the KISS radio galaxies, there are no objects with large radio powers in our local volume. We derive a radio luminosity function (RLF) for the KISS ELGs that agrees very well with previous RLFs that adequately sample the lower-luminosity radio population.Comment: Accepted for publication in the Astronomical Journal (April 2004); 23 pages, 16 figure

    Halo Star Streams in the Solar Neighborhood

    Full text link
    We have assembled a sample of halo stars in the solar neighborhood to look for halo substructure in velocity and angular momentum space. Our sample includes red giants, RR Lyrae, and red horizontal branch stars within 2.5 kpc of the Sun with [Fe/H] less than -1.0. It was chosen to include stars with accurate distances, space velocities, and metallicities as well as well-quantified errors. We confirm the existence of the streams found by Helmi and coworkers, which we refer to as the H99 streams. These streams have a double-peaked velocity distribution in the z direction. We use the results of modeling of the H99 streams by Helmi and collaborators to test how one might use v_z velocity information and radial velocity information to detect kinematic substructure in the halo. We find that detecting the H99 streams with radial velocities alone would require a large sample. We use the velocity distribution of the H99 streams to estimate their age. From our model of the progenitor of the H99 streams, we determine that it was accreted between 6 and 9 Gyr ago. The H99 streams have [alpha/Fe] abundances similar to other halo stars in the solar neighborhood, suggesting that the gas that formed these stars were enriched mostly by Type II SNe. We have also discovered in angular momentum space two other possible substructures, which we refer to as the retrograde and prograde outliers. The retrograde outliers are likely to be halo substructure, but the prograde outliers are most likely part of the smooth halo. The retrograde outliers have significant structure in the v_phi direction and show a range of [alpha/Fe]. The methods presented in this paper can be used to exploit the kinematic information present in future large databases like RAVE, SDSSII/SEGUE, and Gaia.Comment: 46 pages, 13 figures, and 9 tables. Minor changes to text to match proofed version of the paper. Low resolution figures. High resolution version at http://www.astro.wisc.edu/~kepley/solar_streams.p
    corecore