682 research outputs found

    Dissipation in nanocrystalline-diamond nanomechanical resonators

    Get PDF
    We have measured the dissipation and frequency of nanocrystalline-diamond nanomechanical resonators with resonant frequencies between 13.7 MHz and 157.3 MHz, over a temperature range of 1.4–274 K. Using both magnetomotive network analysis and a time-domain ring-down technique, we have found the dissipation in this material to have a temperature dependence roughly following T^(0.2), with Q^(–1) ≈ 10^(–4) at low temperatures. The frequency dependence of a large dissipation feature at ~35–55 K is consistent with thermal activation over a 0.02 eV barrier with an attempt frequency of 10 GHz

    First-principles calculation of mechanical properties of Si <001> nanowires and comparison to nanomechanical theory

    Get PDF
    We report the results of first-principles density functional theory calculations of the Young's modulus and other mechanical properties of hydrogen-passivated Si nanowires. The nanowires are taken to have predominantly {100} surfaces, with small {110} facets according to the Wulff shape. The Young's modulus, the equilibrium length and the constrained residual stress of a series of prismatic beams of differing sizes are found to have size dependences that scale like the surface area to volume ratio for all but the smallest beam. The results are compared with a continuum model and the results of classical atomistic calculations based on an empirical potential. We attribute the size dependence to specific physical structures and interactions. In particular, the hydrogen interactions on the surface and the charge density variations within the beam are quantified and used both to parameterize the continuum model and to account for the discrepancies between the two models and the first-principles results.Comment: 14 pages, 10 figure

    Response of parametrically-driven nonlinear coupled oscillators with application to micro- and nanomechanical resonator arrays

    Full text link
    The response of a coupled array of nonlinear oscillators to parametric excitation is calculated in the weak nonlinear limit using secular perturbation theory. Exact results for small arrays of oscillators are used to guide the analysis of the numerical integration of the model equations of motion for large arrays. The results provide a qualitative explanation for a recent experiment [Buks and Roukes, cond-mat/0008211, to appear in J. MEMS (2002)] involving a parametrically-excited micromechanical resonator array. Future experiments are suggested that could provide quantitative tests of the theoretical predictions.Comment: 27 pages (in preprint format), 8 figure

    Quantum manipulation via atomic-scale magnetoelectric effects

    Full text link
    Magnetoelectric effects at the atomic scale are demonstrated to afford unique functionality. This is shown explicitly for a quantum corral defined by a wall of magnetic atoms deposited on a metal surface where spin-orbit coupling is observable. We show these magnetoelectric effects allow one to control the properties of systems placed inside the corral as well as their electronic signatures; they provide alternative tools for probing electronic properties at the atomic scale

    Coulomb Blockade in a Coupled Nanomechanical Electron Shuttle

    Full text link
    We demonstrate single electron shuttling through two coupled nanomechanical pendula. The pendula are realized as nanopillars etched out of the semiconductor substrate. Coulomb blockade is found at room temperature, allowing metrological applications. By controlling the mechanical shuttling frequency we are able to validate the different regimes of electron shuttling

    Stamp transferred suspended graphene mechanical resonators for radio-frequency electrical readout

    Full text link
    We present a simple micromanipulation technique to transfer suspended graphene flakes onto any substrate and to assemble them with small localized gates into mechanical resonators. The mechanical motion of the graphene is detected using an electrical, radio-frequency (RF) reflection readout scheme where the time-varying graphene capacitor reflects a RF carrier at f=5-6 GHz producing modulation sidebands at f +/- fm. A mechanical resonance frequency up to fm=178 MHz is demonstrated. We find both hardening/softening Duffing effects on different samples, and obtain a critical amplitude of ~40 pm for the onset of nonlinearity in graphene mechanical resonators. Measurements of the quality factor of the mechanical resonance as a function of DC bias voltage Vdc indicate that dissipation due to motion-induced displacement currents in graphene electrode is important at high frequencies and large Vdc

    A Multi-Scale Test of the Forage Maturation Hypothesis in a Partially Migratory Ungulate Population

    Get PDF
    The forage maturation hypothesis (FMH) proposes that ungulate migration is driven by selection for high forage quality. Because quality declines with plant maturation, but intake declines at low biomass, ungulates are predicted to select for intermediate forage biomass to maximize energy intake by following phenological gradients during the growing season. We tested the FMH in the Canadian Rocky Mountains by comparing forage availability and selection by both migrant and nonmigratory resident elk (Cervus elaphus) during three growing seasons from 2002-2004. First, we confirmed that the expected trade-off between forage quality and quantity occurred across vegetation communities. Next, we modeled forage biomass and phenology during the growing season by combining ground and remote-sensing approaches. The growing season started 2.2 days earlier every 1 km east of the continental divide, was delayed by 50 days for every 1000-m increase in elevation, and occurred 8 days earlier on south aspects. Migrant and resident selection for forage biomass was then compared across three spatial scales (across the study area, within summer home ranges, and along movement paths) using VHF and GPS telemetry locations from 119 female elk. Migrant home ranges occurred closer to the continental divide in areas of higher topographical diversity, resulting in migrants consistently selecting for intermediate biomass at the two largest scales, but not at the. nest scale along movement paths. In contrast, residents selected maximum forage biomass across all spatial scales. To evaluate the consequences of selection, we compared exposure at telemetry locations of migrant and resident elk to expected forage biomass and digestibility. The expected digestibility for migrant elk in summer was 6.5% higher than for residents, which was corroborated with higher fecal nitrogen levels for migrants. The observed differences in digestibility should increase migrant elk body mass, pregnancy rates, and adult and calf survival rates. Whether bottom-up effects of improved forage quality are realized will ultimately depend on trade-offs between forage and predation. Nevertheless, this study provides comprehensive evidence that montane ungulate migration leads to greater access to higher-quality forage relative to nonmigratory congeners, as predicted by the forage maturation hypothesis, resulting primarily from large-scale selection patterns

    Minimization of phonon-tunneling dissipation in mechanical resonators

    Get PDF
    Micro- and nanoscale mechanical resonators have recently emerged as ubiquitous devices for use in advanced technological applications, for example in mobile communications and inertial sensors, and as novel tools for fundamental scientific endeavors. Their performance is in many cases limited by the deleterious effects of mechanical damping. Here, we report a significant advancement towards understanding and controlling support-induced losses in generic mechanical resonators. We begin by introducing an efficient numerical solver, based on the "phonon-tunneling" approach, capable of predicting the design-limited damping of high-quality mechanical resonators. Further, through careful device engineering, we isolate support-induced losses and perform the first rigorous experimental test of the strong geometric dependence of this loss mechanism. Our results are in excellent agreement with theory, demonstrating the predictive power of our approach. In combination with recent progress on complementary dissipation mechanisms, our phonon-tunneling solver represents a major step towards accurate prediction of the mechanical quality factor.Comment: 12 pages, 4 figure

    Electron pumping in graphene mechanical resonators

    Full text link
    The combination of high frequency vibrations and metallic transport in graphene makes it a unique material for nano-electromechanical devices. In this letter, we show that graphene-based nano-electromechanical devices are extremely well suited for charge pumping, due to the sensitivity of its transport coefficients to perturbations in electrostatic potential and mechanical deformations, with the potential for novel small scale devices with useful applications
    • …
    corecore