279 research outputs found

    ASYMPTOTIC THEORY OF THE FREE TORSIONAL OSCILLATIONS OF THE EARTH

    Full text link

    SOLUTION OF THE BOLTZMANN-HILBERT INTEGRAL EQUATION

    Full text link

    A note on dynamic surface displacements in an elastic half-space

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41710/1/707_2005_Article_BF01260886.pd

    On the evaluation of some three-body variational integrals

    Get PDF
    Stable recursive relations are presented for the numerical computation of the integrals dr1dr2r1l1r2m1r12n1exp{αr1βr2γr12}\int d{\bf r}_1 d{\bf r}_2 r_1^{l-1} r_2^{m-1} r_{12}^{n-1} \exp{\{-\alpha r_1 -\beta r_2 -\gamma r_{12}\}} (ll, mm and nn integer, α\alpha, β\beta and γ\gamma real) when the indices ll, mm or nn are negative. Useful formulas are given for particular values of the parameters α\alpha, β\beta and γ\gamma.Comment: 12 pages, 1 figure (PS) and 3 tables. Old figures 2 and 3 replaced by Tables I and III. A further table added. Paper enlarged giving some tips on the convergence of quadrature

    Gravitationally induced electromagnetism at the Compton scale

    Full text link
    It is shown that Einstein gravity tends to modify the electric and magnetic fields appreciably at distances of the order of the Compton wavelength. At that distance the gravitational field becomes spin dominated rather than mass dominated. The gravitational field couples to the electromagnetic field via the Einstein-Maxwell equations which in the simplest model causes the electrostatic field of charged spinning particles to acquire an oblate structure relative to the spin direction. For electrons and protons, a pure Coulomb field is therefore likely to be incompatible with general relativity at the Compton scale. In the simplest model, the magnetic dipole corresponds to the Dirac g-factor, g=2. Also, it follows from the form of the electric field that the electric dipole moment vanishes, in agreement with current experimental limits for the electron. Quantitatively, the classical Einstein-Maxwell theory predicts the magnetic and electric dipoles of the electron to an accuracy of about one part in 10^{-3} or better. Going to the next multipole order, one finds that the first non-vanishing higher multipole is the electric quadrupole moment which is predicted to be -124 barn for the electron. Any non-zero value of the electric quadrupole moment for the electron or the proton would be a clear sign of curvature due to the implied violation of rotation invariance. There is also a possible spherical modification of the Coulomb force proportional to r^{-4}. However, the size of this effect is well below current experimental limits. The corrections to the hydrogen spectrum are expected to be small but possibly detectable.Comment: 11 pages, 3 figures: revised version published in Class. Quantum Grav. 23 (2006) 3111-3122; Conclusions unchange

    Positronic lithium, an electronically stable Li-e+^+ ground state

    Get PDF
    Calculations of the positron-Li system were performed using the Stochastic Variational Method and yielded a minimum energy of -7.53208 Hartree for the L=0 ground state. Unlike previous calculations of this system, the system was found to be stable against dissociation into the Ps + Li+^+ channel with a binding energy of 0.00217 Hartree and is therefore electronically stable. This is the first instance of a rigorous calculation predicting that it is possible to combine a positron with a neutral atom and form an electronically stable bound state.Comment: 11 pages, 2 tables. To be published in Phys.Rev.Let

    Two-Center Integrals for r_{ij}^{n} Polynomial Correlated Wave Functions

    Full text link
    All integrals needed to evaluate the correlated wave functions with polynomial terms of inter-electronic distance are included. For this form of the wave function, the integrals needed can be expressed as a product of integrals involving at most four electrons

    Horizontal ducting of sound by curved nonlinear internal gravity waves in the continental shelf areas

    Get PDF
    Author Posting. © Acoustical Society of America, 2013. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 133 (2013): 37-49, doi:10.1121/1.4770240.The acoustic ducting effect by curved nonlinear gravity waves in shallow water is studied through idealized models in this paper. The internal wave ducts are three-dimensional, bounded vertically by the sea surface and bottom, and horizontally by aligned wavefronts. Both normal mode and parabolic equation methods are taken to analyze the ducted sound field. Two types of horizontal acoustic modes can be found in the curved internal wave duct. One is a whispering-gallery type formed by the sound energy trapped along the outer and concave boundary of the duct, and the other is a fully bouncing type due to continual reflections from boundaries in the duct. The ducting condition depends on both internal-wave and acoustic-source parameters, and a parametric study is conducted to derive a general pattern. The parabolic equation method provides full-field modeling of the sound field, so it includes other acoustic effects caused by internal waves, such as mode coupling/scattering and horizontal Lloyd's mirror interference. Two examples are provided to present internal wave ducts with constant curvature and meandering wavefronts.This work was sponsored by the Office of Naval Research under grants N00014-10-1-0040 and N00014-11- 1-0701

    Hyperspherical partial wave calculation for double photoionization of the helium atom at 20 eV excess energy

    Full text link
    Hyperspherical partial wave approach has been applied here in the study of double photoionization of the helium atom for equal energy sharing geometry at 20 eV excess energy. Calculations have been done both in length and velocity gauges and are found to agree with each other, with the CCC results and with experiments and exhibit some advantages of the corresponding three particle wave function over other wave functions in use.Comment: 11 pages, 1 figure, submitted to J. Phys B: At. Mol. Opt. Phys; v2 - revised considerably, rewritten using ioplatex clas
    corecore