12,492 research outputs found

    Charge and Magnetic Flux Correlations in Chern-Simons Theory with Fermions

    Full text link
    Charge and magnetic flux bearing operators are introduced in Chern-Simons theory both in its pure form and when it is coupled to fermions. The magnetic flux creation operator turns out to be the Wilson line. The euclidean correlation functions of these operators are shown to be local and are evaluated exactly in the pure case and through an expansion in the inverse fermion mass whenever these are present. Physical states only occur in the presence of fermions and consist of composite charge-magnetic flux carrying states which are in general anyonic. The large distance behavior of the correlation functions indicates the condensation of charge and magnetic flux.Comment: Latex, 17 page

    Vanishing conductivity of quantum solitons in polyacetylene

    Full text link
    Quantum solitons or polarons are supposed to play a crucial role in the electric conductivity of polyacetylene, in the intermediate doping regime. We present an exact fully quantized calculation of the quantum soliton conductivity in polyacetylene and show that it vanishes exactly. This is obtained by applying a general method of soliton quantization, based on order-disorder duality, to a Z(2)-symmetric complex extension of the TLM dimerization effective field theory. We show that, in this theory, polyacetylene solitons are sine-Gordon solitons in the phase of the complex field.Comment: To appear in J. Phys. A: Math. Theor., 15 page

    Inverter-converter automatic paralleling and protection

    Get PDF
    Electric control and protection circuits for parallel operation of inverter-converte

    Quantum global vortex strings in a background field

    Full text link
    We consider quantum global vortex string correlation functions, within the Kalb-Ramond framework, in the presence of a background field-strength tensor and investigate the conditions under which this yields a nontrivial contribution to those correlation functions. We show that a background field must be supplemented to the Kalb-Ramond theory, in order to correctly describe the quantum properties of the vortex strings. The explicit form of this background field and the associated quantum vortex string correlation function are derived. The complete expression for the quantum vortex creation operator is explicitly obtained. We discuss the potential applicability of our results in the physics of superfluids and rotating Bose-Einstein condensates.Comment: To appear in Journal of Physics A: Mathematical and Genera

    Deterministic Secure Communications using Two-Mode Squeezed States

    Get PDF
    We propose a scheme for quantum cryptography that uses the squeezing phase of a two-mode squeezed state to transmit information securely between two parties. The basic principle behind this scheme is the fact that each mode of the squeezed field by itself does not contain any information regarding the squeezing phase. The squeezing phase can only be obtained through a joint measurement of the two modes. This, combined with the fact that it is possible to perform remote squeezing measurements, makes it possible to implement a secure quantum communication scheme in which a deterministic signal can be transmitted directly between two parties while the encryption is done automatically by the quantum correlations present in the two-mode squeezed state.Comment: 10 pages, 4 figure

    Spin g-factor due to electronic interactions in graphene

    Full text link
    The gyromagnetic factor is an important physical quantity relating the magnetic-dipole moment of a particle to its spin. The electron spin g-factor in vacuo is one of the best model-based theoretical predictions ever made, showing agreement with the measured value up to ten parts per trillion. However, for electrons in a material the g-factor is modified with respect to its value in vacuo because of environment interactions. Here, we show how interaction effects lead to the spin g-factor correction in graphene by considering the full electromagnetic interaction in the framework of pseudo-QED. We compare our theoretical prediction with experiments performed on graphene deposited on SiO2 and SiC, and we find a very good agreement between them.Comment: Improved version of the manuscript; valley g-factor part has been remove

    Duality, Quantum Skyrmions and the Stability of an SO(3) Two-Dimensional Quantum Spin-Glass

    Full text link
    Quantum topological excitations (skyrmions) are analyzed from the point of view of their duality to spin excitations in the different phases of a disordered two-dimensional, short-range interacting, SO(3) quantum magnetic system of Heisenberg type. The phase diagram displays all the phases, which are allowed by the duality relation. We study the large distance behavior of the two-point correlation function of quantum skyrmions in each of these phases and, out of this, extract information about the energy spectrum and non-triviality of these excitations. The skyrmion correlators present a power-law decay in the spin-glass(SG)-phase, indicating that these quantum topological excitations are gapless but nontrivial in this phase. The SG phase is dual to the AF phase, in the sense that topological and spin excitations are respectively gapless in each of them. The Berezinskii-Kosterlitz-Thouless mechanism guarantees the survival of the SG phase at T≠0T \neq 0, whereas the AF phase is washed out to T=0 by the quantum fluctuations. Our results suggest a new, more symmetric way of characterizing a SG-phase: one for which both the order and disorder parameters vanish, namely =0 = 0 , =0 =0 , where σ\sigma is the spin and μ\mu is the topological excitation operators.Comment: 10 pages, 1 figur
    • …
    corecore