6,794 research outputs found

    Analytical Expression for the RKKY Interaction in Doped Graphene

    Full text link
    We obtain an analytical expression for the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction JJ in electron or hole doped graphene for linear Dirac bands. The results agree very well with the numerical calculations for the full tight-binding band structure in the regime where the linear band structure is valid. The analytical result, expressed in terms of the Meijer G-function, consists of a product of two oscillatory terms, one coming from the interference between the two Dirac cones and the second coming from the finite size of the Fermi surface. For large distances, the Meijer G-function behaves as a sinusoidal term, leading to the result J∼Rβˆ’2kFsin⁑(2kFR)1+cos⁑[(Kβˆ’Kβ€²).R]J \sim R^{-2} k_F \sin (2 k_F R) {1 + \cos[(K-K').R]} for moments located on the same sublattice. The Rβˆ’2R^{-2} dependence, which is the same for the standard two-dimensional electron gas, is universal irrespective of the sublattice location and the distance direction of the two moments except when kF=0k_F =0 (undoped case), where it reverts to the Rβˆ’3R^{-3} dependence. These results correct several inconsistencies found in the literature.Comment: 5 pages, 5 figure

    Evolution and nucleosynthesis of helium-rich asymptotic giant branch models

    Full text link
    There is now strong evidence that some stars have been born with He mass fractions as high as Yβ‰ˆ0.40Y \approx 0.40 (e.g., in Ο‰\omega Centauri). However, the advanced evolution, chemical yields, and final fates of He-rich stars are largely unexplored. We investigate the consequences of He-enhancement on the evolution and nucleosynthesis of intermediate-mass asymptotic giant branch (AGB) models of 3, 4, 5, and 6 MβŠ™_\odot with a metallicity of Z=0.0006Z = 0.0006 ([Fe/H] β‰ˆβˆ’1.4\approx -1.4). We compare models with He-enhanced compositions (Y=0.30,0.35,0.40Y=0.30, 0.35, 0.40) to those with primordial He (Y=0.24Y=0.24). We find that the minimum initial mass for C burning and super-AGB stars with CO(Ne) or ONe cores decreases from above our highest mass of 6 MβŠ™_\odot to ∼\sim 4-5 MβŠ™_\odot with Y=0.40Y=0.40. We also model the production of trans-Fe elements via the slow neutron-capture process (s-process). He-enhancement substantially reduces the third dredge-up efficiency and the stellar yields of s-process elements (e.g., 90% less Ba for 6 MβŠ™_\odot, Y=0.40Y=0.40). An exception occurs for 3 MβŠ™_\odot, where the near-doubling in the number of thermal pulses with Y=0.40Y=0.40 leads to ∼\sim 50% higher yields of Ba-peak elements and Pb if the 13^{13}C neutron source is included. However, the thinner intershell and increased temperatures at the base of the convective envelope with Y=0.40Y=0.40 probably inhibit the 13^{13}C neutron source at this mass. Future chemical evolution models with our yields might explain the evolution of s-process elements among He-rich stars in Ο‰\omega Centauri.Comment: 21 pages, 16 figures, accepted for publication by MNRAS. Stellar yields included as online data table

    Superconductivity and Field-Induced Magnetism in Pr2βˆ’x_{2-x}Cex_xCuO4_4 Single Crystals

    Full text link
    We report muon-spin rotation/relaxation (muSR) measurements on single crystals of the electron-doped high-T_c superconductor Pr2βˆ’x_{2-x}Cex_xCuO4_4. In zero external magnetic field, superconductivity is found to coexist with Cu spins that are static on the muSR time scale. In an applied field, we observe a Knight shift that is primarily due to the magnetic moment induced on the Pr ions. Below the superconducting transition temperature T_c, an additional source of static magnetic order appears throughout the sample. This finding is consistent with antiferromagnetic ordering of the Cu spins in the presence of vortices. We also find that the temperature dependence of the in-plane magnetic penetration depth in the vortex state resembles that of the hole-doped cuprates at temperatures above ~ 0.2 T_c.Comment: 4 pages, 5 figure

    Superstatistical random-matrix-theory approach to transition intensities in mixed systems

    Full text link
    We study the fluctuation properties of transition intensities applying a recently proposed generalization of the random matrix theory, which is based on Beck and Cohen's superstatistics. We obtain an analytic expression for the distribution of the reduced transition probabilities that applies to systems undergoing a transition out of chaos. The obtained distribution fits the results of a previous nuclear shell model calculations for some electromagnetic transitions that deviate from the Porter-Thomas distribution. It agrees with the experimental reduced transition probabilities for the 26A nucleus better than the commonly used chi-squared distribution.Comment: 14 pages, 3 figure

    Strategies for the discontinuation of humidified high flow nasal cannula (HHFNC) in preterm infants (Review)

    Get PDF
    BACKGROUND: Humidified high flow nasal cannula (HHFNC) delivers humidified gas at increased flow rates via binasal prongs and is becoming widely accepted as a method of non-invasive respiratory support for preterm infants. While indications for the use of (HHFNC) and its associated risks and benefits are being investigated, the best strategy for the discontinuation of HHFNC remains unknown. At what point an infant is considered stable enough to attempt to start withdrawing their HHFNC is not known. The criteria for a failed attempt at HHFNC discontinuation is also unclear

    The physical significance of the Babak-Grishchuk gravitational energy-momentum tensor

    Full text link
    We examine the claim of Babak and Grishchuk [1] to have solved the problem of localising the energy and momentum of the gravitational field. After summarising Grishchuk's flat-space formulation of gravity, we demonstrate its equivalence to General Relativity at the level of the action. Two important transformations are described (diffeomorphisms applied to all fields, and diffeomorphisms applied to the flat-space metric alone) and we argue that both should be considered gauge transformations: they alter the mathematical representation of a physical system, but not the system itself. By examining the transformation properties of the Babak-Grishchuk gravitational energy-momentum tensor under these gauge transformations (infinitesimal and finite) we conclude that this object has no physical significance.Comment: 10 pages. Submitted to Phys. Rev. D; acknowledgements adjuste

    Random matrix theory within superstatistics

    Full text link
    We propose a generalization of the random matrix theory following the basic prescription of the recently suggested concept of superstatistics. Spectral characteristics of systems with mixed regular-chaotic dynamics are expressed as weighted averages of the corresponding quantities in the standard theory assuming that the mean level spacing itself is a stochastic variable. We illustrate the method by calculating the level density, the nearest-neighbor-spacing distributions and the two-level correlation functions for system in transition from order to chaos. The calculated spacing distribution fits the resonance statistics of random binary networks obtained in a recent numerical experiment.Comment: 20 pages, 6 figure
    • …
    corecore